The hot deformation behavior of 19Cr2Mo and 19Cr2Mo1W ferritic stainless steels was studied by using uniaxial hot compression tests on a thermomechanical simulator. The hot deformation was carried out at temperature r...The hot deformation behavior of 19Cr2Mo and 19Cr2Mo1W ferritic stainless steels was studied by using uniaxial hot compression tests on a thermomechanical simulator. The hot deformation was carried out at temperature ranging from 800 to 1150℃ and strain rates from 0.01 to 10 s^-1. Microstructure change and precipitation behavior during hot deformation were investigated by optical microscopy, electron probe microanalysis and transmission electron microscopy. The effects of temperature and strain rate on deformation behavior were obtained by a classical equation in Zener-Hollomon parameter. Since W addition to 19Cr2Mo1W steel could refine the size of the precipitates to enhance the precipitation strengthening and also had the effect of solution strengthening, the dynamic recrystallization, dynamic recovery and grain growth of 19Cr2Mo1W ferritic stainless steel were inhibited to a certain extent. The precipitate size of 19Cr2Mo1W steel was finer than that of 19Cr2Mo steel under the same deformation condition, which is due to the fact that the atomic diffusion is suppressed by W addition. W addition increased the amount of Laves phase in 19Cr2Mo1W steel, and thus Laves phase in 19Cr2Mo1W steel could be formed at higher temperature than that in 19Cr2Mo steel.展开更多
A 444-type heat-resistant ferritic stainless steel containing 0.05 wt% Ce(rare earth element) and 2 wt%(Mo+W) was adopted as an experimental material to study the effect of finish rolling temperature on microstructure...A 444-type heat-resistant ferritic stainless steel containing 0.05 wt% Ce(rare earth element) and 2 wt%(Mo+W) was adopted as an experimental material to study the effect of finish rolling temperature on microstructure and texture evolution as well as on mechanical properties and formability.The rolling processes contain hot rolling at two different finish rolling temperatures(860℃ and 770℃) and annealing,cold rolling and subsequent annealing.It was found that the microstructures after hot rolling and annealing could be refined by lowering finish rolling temperature.The resultant microstructures after cold rolling and annealing were hereditarily refined.Lowering finish rolling temperature can weaken α-fiber texture in hotrolled or cold-rolled ferritic stainless steel strip,while γ-fiber texture in the final product was homogeneously strengthened.Additionally,enhanced mechanical property and formability in terms of strength and average plastic strain ratio could be obtained via decreasing finish rolling temperature.展开更多
基金National Natural Science Foundation of China and Baowu Steel Group Co., Ltd.(Grant No. U1660205).
文摘The hot deformation behavior of 19Cr2Mo and 19Cr2Mo1W ferritic stainless steels was studied by using uniaxial hot compression tests on a thermomechanical simulator. The hot deformation was carried out at temperature ranging from 800 to 1150℃ and strain rates from 0.01 to 10 s^-1. Microstructure change and precipitation behavior during hot deformation were investigated by optical microscopy, electron probe microanalysis and transmission electron microscopy. The effects of temperature and strain rate on deformation behavior were obtained by a classical equation in Zener-Hollomon parameter. Since W addition to 19Cr2Mo1W steel could refine the size of the precipitates to enhance the precipitation strengthening and also had the effect of solution strengthening, the dynamic recrystallization, dynamic recovery and grain growth of 19Cr2Mo1W ferritic stainless steel were inhibited to a certain extent. The precipitate size of 19Cr2Mo1W steel was finer than that of 19Cr2Mo steel under the same deformation condition, which is due to the fact that the atomic diffusion is suppressed by W addition. W addition increased the amount of Laves phase in 19Cr2Mo1W steel, and thus Laves phase in 19Cr2Mo1W steel could be formed at higher temperature than that in 19Cr2Mo steel.
基金financial support from the National Natural Science Foundation of China and Baowu Steel Group Co., Ltd. (Grant No. U1660205)。
文摘A 444-type heat-resistant ferritic stainless steel containing 0.05 wt% Ce(rare earth element) and 2 wt%(Mo+W) was adopted as an experimental material to study the effect of finish rolling temperature on microstructure and texture evolution as well as on mechanical properties and formability.The rolling processes contain hot rolling at two different finish rolling temperatures(860℃ and 770℃) and annealing,cold rolling and subsequent annealing.It was found that the microstructures after hot rolling and annealing could be refined by lowering finish rolling temperature.The resultant microstructures after cold rolling and annealing were hereditarily refined.Lowering finish rolling temperature can weaken α-fiber texture in hotrolled or cold-rolled ferritic stainless steel strip,while γ-fiber texture in the final product was homogeneously strengthened.Additionally,enhanced mechanical property and formability in terms of strength and average plastic strain ratio could be obtained via decreasing finish rolling temperature.