Well-crystalline CeO_2 nanowires were prepared via a surfactant-assisted hydrothermal process.Reaction temperature and reaction time were changed for the determination of optimal synthesis parameters.The as-obtained p...Well-crystalline CeO_2 nanowires were prepared via a surfactant-assisted hydrothermal process.Reaction temperature and reaction time were changed for the determination of optimal synthesis parameters.The as-obtained products were characterized by X-ray diffraction (XRD),high-resolution transmission electron microscopy(HRTEM),and field emission scanning electron microscopy(FESEM).The results show that single crystal CeO_2 nanowires with high yield and good uniformity can be obtained hydrothermally at 180℃for 12 h with the aid of 2.0 g surfactant(polyvinyl pyrrolidone,PVP).The role of PVP was then discussed and a possible growth mechanism was proposed. Moreover,room temperature photoluminescence(PL) spectra were obtained for these CeO2 nanowires,which are believed to be related to the abundant defects in these nanostructures.展开更多
The inelastic electron tunneling spectroscopy(IETS) of four edge-modified finite-size grapheme nanoribbon(GNR)-based molecular devices has been studied by using the density functional theory and Green's function ...The inelastic electron tunneling spectroscopy(IETS) of four edge-modified finite-size grapheme nanoribbon(GNR)-based molecular devices has been studied by using the density functional theory and Green's function method. The effects of atomic structures and connection types on inelastic transport properties of the junctions have been studied. The IETS is sensitive to the electrode connection types and modification types. Comparing with the pure hydrogen edge passivation systems, we conclude that the IETS for the lower energy region increases obviously when using donor–acceptor functional groups as the edge modification types of the central scattering area. When using donor–acceptor as the electrode connection groups, the intensity of IETS increases several orders of magnitude than that of the pure ones. The effects of temperature on the inelastic electron tunneling spectroscopy also have been discussed. The IETS curves show significant fine structures at lower temperatures. With the increasing of temperature, peak broadening covers many fine structures of the IETS curves.The changes of IETS in the low-frequency region are caused by the introduction of the donor–acceptor groups and the population distribution of thermal particles. The effect of Fermi distribution on the tunneling current is persistent.展开更多
As an environment-friendly and low-cost petrochemical by-product, asphalt has great potential in the preparation of metal-free oxygen reduction electrocatalysts with excellent performance and outstanding stability. In...As an environment-friendly and low-cost petrochemical by-product, asphalt has great potential in the preparation of metal-free oxygen reduction electrocatalysts with excellent performance and outstanding stability. In this paper, we converted asphalt into porous carbon nanosheets by a simple activation method, using potassium citrate as the swelling agent.展开更多
基金supported by the National Natural Science Foundation of China(Nos.50901074 and 50672001)the Young Teacher Natural Science Fund of Anhui Province,China(No.2008jq1002).
文摘Well-crystalline CeO_2 nanowires were prepared via a surfactant-assisted hydrothermal process.Reaction temperature and reaction time were changed for the determination of optimal synthesis parameters.The as-obtained products were characterized by X-ray diffraction (XRD),high-resolution transmission electron microscopy(HRTEM),and field emission scanning electron microscopy(FESEM).The results show that single crystal CeO_2 nanowires with high yield and good uniformity can be obtained hydrothermally at 180℃for 12 h with the aid of 2.0 g surfactant(polyvinyl pyrrolidone,PVP).The role of PVP was then discussed and a possible growth mechanism was proposed. Moreover,room temperature photoluminescence(PL) spectra were obtained for these CeO2 nanowires,which are believed to be related to the abundant defects in these nanostructures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304001,51272001,51472003,and 11174002)the National Key Basic Research Program of China(Grant No.2013CB632705)+4 种基金the Ph.D.Programs Foundation for the Youth Scholars of Ministry of Education of China(Grant No.20133401120002)the Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials of Donghua University(Grant No.LK1217)the Foundation of Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices Integration of Anhui University(Grant No.01001795-201410)the Key Project of the Foundation of Anhui Educational Committee,China(Grant No.KJ2013A035)the Ph.D.Programs Foundation of Anhui University,China(Grant No.33190134)
文摘The inelastic electron tunneling spectroscopy(IETS) of four edge-modified finite-size grapheme nanoribbon(GNR)-based molecular devices has been studied by using the density functional theory and Green's function method. The effects of atomic structures and connection types on inelastic transport properties of the junctions have been studied. The IETS is sensitive to the electrode connection types and modification types. Comparing with the pure hydrogen edge passivation systems, we conclude that the IETS for the lower energy region increases obviously when using donor–acceptor functional groups as the edge modification types of the central scattering area. When using donor–acceptor as the electrode connection groups, the intensity of IETS increases several orders of magnitude than that of the pure ones. The effects of temperature on the inelastic electron tunneling spectroscopy also have been discussed. The IETS curves show significant fine structures at lower temperatures. With the increasing of temperature, peak broadening covers many fine structures of the IETS curves.The changes of IETS in the low-frequency region are caused by the introduction of the donor–acceptor groups and the population distribution of thermal particles. The effect of Fermi distribution on the tunneling current is persistent.
基金financially supported by the National Natural Science Foundation of China (No.U2003132)the National Key R&D Program of China (No.2021YFA1600202)+1 种基金the Open fund projects from the South-west University of Science and Technology (No.21kfhg11)the Opening Foundation of Shanxi Provincial Key Laboratory for High Performance Battery Materials and Devices (No.2022HPBMD01001)。
文摘As an environment-friendly and low-cost petrochemical by-product, asphalt has great potential in the preparation of metal-free oxygen reduction electrocatalysts with excellent performance and outstanding stability. In this paper, we converted asphalt into porous carbon nanosheets by a simple activation method, using potassium citrate as the swelling agent.