This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈...This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈ R. The necessary condition for linear multistep methods to be Nτ(0)-stable is given. It is shown that the trapezoidal rule is Nτ(0)-compatible. Figures of stability region for some linear multistep methods are depicted.展开更多
基金This work was supported by the NSF of P.R.of China(10271036)
文摘This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈ R. The necessary condition for linear multistep methods to be Nτ(0)-stable is given. It is shown that the trapezoidal rule is Nτ(0)-compatible. Figures of stability region for some linear multistep methods are depicted.