Magnetic skyrmions have interesting properties,including their small size,topological stability,and extremely low threshold current for current-driven motion.Therefore,they are regarded as promising candidates for nex...Magnetic skyrmions have interesting properties,including their small size,topological stability,and extremely low threshold current for current-driven motion.Therefore,they are regarded as promising candidates for next-generation magnetic memory devices.Lorentz transmission electron microscopy(TEM)has an ultrahigh magnetic domain resolution(~2 nm),it is thus an ideal method for direct real-space imaging of fine magnetic configurations of ultra-small skyrmions.In this paper,we describe the basic principles of Lorentz-TEM and off-axis electron holography and review recent experimental developments in magnetic skyrmion imaging using these two methods.展开更多
We report Shubnikov–de Haas(SdH)oscillations of a three-dimensional(3D) Dirac semimetal candidate of layered material ZrTe_5 single crystals through contactless electron spin resonance(ESR)measurements with the magne...We report Shubnikov–de Haas(SdH)oscillations of a three-dimensional(3D) Dirac semimetal candidate of layered material ZrTe_5 single crystals through contactless electron spin resonance(ESR)measurements with the magnetic field up to 1.4 T.The ESR signals manifest remarkably anisotropic characteristics with respect to the direction of the magnetic field,indicating an anisotropic Fermi surface in ZrTe_5.Further experiments demonstrate that the ZrTe_5 single crystals have the signature of massless Dirac fermions with nontrivialBerry phase,key evidence for 3D Dirac/Weyl fermions.Moreover,the onset of quantum oscillation of our ZrTe_5 crystals revealed by the ESR can be derived down to 0.2 T,much smaller than the onset of SdH oscillation determined by conventional magnetoresistance measurements.Therefore,ESR measurement is a powerful tool to study the topologically nontrivial electronic structure in Dirac/Weyl semimetals and other topological materials with low bulk carrier density.展开更多
Tunable carrier density plays a key role in the investigation of novel transport properties in three-dimensional topological semimetals.We demonstrate that the carrier density,as well as the mobility,of Dirac semimeta...Tunable carrier density plays a key role in the investigation of novel transport properties in three-dimensional topological semimetals.We demonstrate that the carrier density,as well as the mobility,of Dirac semimetal Cd_(3)As_(2) nanoplates can be effectively tuned via in situ thermal treatment at 350 K for one hour,resulting in non-monotonic evolution by virtue of the thermal cycling treatments.The upward shift of Fermi level relative to the Dirac nodes blurs the surface Fermi-arc states,accompanied by an anomalous phase shift in the oscillations of bulk states,due to a change in the topology of the electrons.Meanwhile,the oscillation peaks of bulk longitudinal magnetoresistivity shift at high fields,due to their coupling to the oscillations of the surface Fermi-arc states.Our work provides a thermal control mechanism for the manipulation of quantum states in Dirac semimetal Cd_(3)As_(2) at high temperatures,via their carrier density.展开更多
van der Waals(vdW)semiconductors have gained significant attention due to their unique physical properties and promising applications,which are embedded within distinct crystallographic symmetries.Here,we report a pre...van der Waals(vdW)semiconductors have gained significant attention due to their unique physical properties and promising applications,which are embedded within distinct crystallographic symmetries.Here,we report a pressure-induced crystallineamorphization-recrystallization transition under compression in binary vdW semiconductor SiP.Upon compression to 52 GPa,bulk SiP undergoes a consecutive phase transition from pristine crystalline to amorphous phase,ultimately to recrystallized phase.By employing synchrotron X-ray diffraction experiments in conjunction with high-pressure crystal structure searching techniques,we reveal that the recrystallized Si P hosts a tetragonal structure(space group I4mm)and further transforms partially into a cubic phase(space group Fm3m).Consistently,electrical transport and alternating-current magnetic susceptibility measurements indicate the presence of three superconducting phases,which are embedded in separate crystallographic symmetries—the amorphous,tetragonal,and cubic structures.Furthermore,a high superconducting transition temperature of 12.3 K is observed in its recovered tetragonal phase during decompression.Our findings uncover a novel phase evolution path and elucidate a pressure-engineered structure-property relationship in vdW semiconductor SiP.These results not only offer a new platform to explore the transformation between different structures and functionalities,but also provide new opportunities for the design and exploration of advanced devices based on vdW materials.展开更多
Broadband photodetectors with polarization-sensitive ability have received extraordinary attention for modern optoelectronic devices.Ideal photodetectors should possess high responsivity,fast response,and good stabili...Broadband photodetectors with polarization-sensitive ability have received extraordinary attention for modern optoelectronic devices.Ideal photodetectors should possess high responsivity,fast response,and good stability,which are rare to meet at the same time in one low-symmetric two-dimentional(2D)material.In this work,neodymium diantimonides(RSb_(2)),a member of light rare-earth diantimonides RSb_(2)(R=La–Nd,Sm)with low-symmetry structure,is introduced as a fascinating highly anisotropic 2D material for broadband detection(532 nm to 4μm).The photodetector exhibits a responsivity of 0.49 mA·W^(−1)with 15μs response time at 532 nm and highly stable performance under ambient conditions over 8 months.Furthermore,we identify the polarization-sensitive photoresponse of the detector and demonstrate a high anisotropic factor~1.6.In addition,strong inplane anisotropy is revealed by anisotropic phonon response and the photodetection mechanism is investigated by scanning photocurrent microscopy measurements.This pioneer work on RSb_(2)paves the way for further exploration of 2D RSb_(2)for high performance polarized photodetectors with fast photothermoelectric response.展开更多
Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets.They are then proposed to be utilized as binary bits to build racetrack...Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets.They are then proposed to be utilized as binary bits to build racetrack memory devices.The ability to manipulate the two magnetic objects controllably by current in nanostructures is the prerequisite to realize the device.Here,we demonstrate by numerical simulations that a magnetic bobber and a skyrmion tube can be transformed to each other using spinpolarized current in nanostripes with stepped shape.We also show such stepped nanostructures can be readily applied as the write head for the skyrmion-bobber-based racetrack memory.展开更多
Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb fi lms using low-temperature molecular beam epitaxy and focus ion beam microfabricat...Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb fi lms using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques.We observed novel magnetoresistance oscillations below the superconducting transition temperature(TC)of the bridges.The oscillations which were not seen in the crystalline Pb fi lmsmay originate from the inhomogeneity of superconductivity induced by the applied magnetic fi elds on approaching the normal state,or the degradation of fi lm quality by thermal evolution.展开更多
We present the systematic de Haas–van Alphen(d Hv A) quantum oscillations studies on the recently discovered topological Dirac semimetal pyrite PtBi2 single crystals. Remarkable d Hv A oscillations are emerged at a l...We present the systematic de Haas–van Alphen(d Hv A) quantum oscillations studies on the recently discovered topological Dirac semimetal pyrite PtBi2 single crystals. Remarkable d Hv A oscillations are emerged at a low field about 1.5 T. From the analyses of the d Hv A oscillations, we extract the high quantum mobilities, light effective masses and phase shift factors for the Dirac fermions in pyrite PtBi2. From the angular dependence of the d Hv A oscillations, we map out the topology of the Fermi surface.Furthermore, we identify two additional oscillation frequencies that are not probed by the Sd H oscillations, which provides us with opportunities to further understand its Fermi surface topology.展开更多
The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property mo...The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene- 3,4,9,10-tetracarboxylic dianhydride (IrFCDA). We demonstrate that, unlike FTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S-m i (much higher than that of pure crystalline PTCDA films).展开更多
Anomalous Nernst effect, as a thermal partner of anomalous Hall effect, is particularly sensitive to the Berry curvature anomaly near the Fermi level, and has been used to probe the topological nature of quantum mater...Anomalous Nernst effect, as a thermal partner of anomalous Hall effect, is particularly sensitive to the Berry curvature anomaly near the Fermi level, and has been used to probe the topological nature of quantum materials. In this work, we report the observation of both effects in the ferromagnetic Weyl-semimetal Fe_(3-δ)GeTe_(2) with tunable Fe vacancies. With decreasing Fe vacancies,the anomalous Hall conductivity evolves as a function of the longitudinal conductivity from the hopping region to the region where the intrinsic Berry curvature contribution dominates. Concomitant evolutions in the anomalous Nernst signal and the anomalous off-diagonal thermoelectric coefficient are observed below the Curie temperature, displaying a unique sign change caused by the Fe vacancies. Combining these results with first-principles calculations, we argue that the Fe-vacancy concentration plays a unique role in simultaneously tuning the chemical potential and ferromagnetism, which in turn controls the Berry curvature contribution in this family of ferromagnetic topological semimetals.展开更多
The superconductivity and nontrivial topological electronic state are key hallmarks of topological superconductors.Here,we focus on the transport signals of possible topological surface state in the topological superc...The superconductivity and nontrivial topological electronic state are key hallmarks of topological superconductors.Here,we focus on the transport signals of possible topological surface state in the topological superconductor candidate β-PdBi_(2) nanoflake with a thickness of 21 nm.The resistance demonstrates a semiconductor-metal transition followed by an upturned behavior as the temperature decreases.A large and unsaturated longitudinal magnetoresistance(MR),accompanied by distinct Shubnikov-de Hass oscillation in Hall resistance,is observed.An analysis of Hall resistance reveals that the carriers present the characteristics of relativistic particles with small effective mass and extremely high mobility.The angle-dependent quantum oscillations demonstrate a two-dimensional Fermi surface topology.A giant anisotropic MR as large as 98%is detected when rotating the magnetic field.These results provide the possible transport signals of a nontrivial topological electronic state,establishing a further understanding of the topological properties of the low-dimensional topological superconductor candidate β-PdBi_(2).展开更多
基金Project supported by the National Key Research and Development Program of China,(Grant No.2017YFA0303201)the Key Research Program of Frontier Sciences,CAS,(Grant No.QYZDB-SSW-SLH009)+2 种基金the National Natural Science Foundation of China(Grant Nos.51622105 and 11804343)the President Foundation of Hefei Institutes of Physical Science,CAS(Grant No.YZJJ2018QN15)the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology,(Grant No.2016FXCX001)
文摘Magnetic skyrmions have interesting properties,including their small size,topological stability,and extremely low threshold current for current-driven motion.Therefore,they are regarded as promising candidates for next-generation magnetic memory devices.Lorentz transmission electron microscopy(TEM)has an ultrahigh magnetic domain resolution(~2 nm),it is thus an ideal method for direct real-space imaging of fine magnetic configurations of ultra-small skyrmions.In this paper,we describe the basic principles of Lorentz-TEM and off-axis electron holography and review recent experimental developments in magnetic skyrmion imaging using these two methods.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401003the National Natural Science Foundation of China under Grant Nos 11774353,11574320,11374302,11804340,U1432251,U1732274+1 种基金the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2018CXFX002the China Postdoctoral Science Foundation under Grant No 2018M630718
文摘We report Shubnikov–de Haas(SdH)oscillations of a three-dimensional(3D) Dirac semimetal candidate of layered material ZrTe_5 single crystals through contactless electron spin resonance(ESR)measurements with the magnetic field up to 1.4 T.The ESR signals manifest remarkably anisotropic characteristics with respect to the direction of the magnetic field,indicating an anisotropic Fermi surface in ZrTe_5.Further experiments demonstrate that the ZrTe_5 single crystals have the signature of massless Dirac fermions with nontrivialBerry phase,key evidence for 3D Dirac/Weyl fermions.Moreover,the onset of quantum oscillation of our ZrTe_5 crystals revealed by the ESR can be derived down to 0.2 T,much smaller than the onset of SdH oscillation determined by conventional magnetoresistance measurements.Therefore,ESR measurement is a powerful tool to study the topologically nontrivial electronic structure in Dirac/Weyl semimetals and other topological materials with low bulk carrier density.
基金the National Key Research and Development Program of China(Grant No.2016YFA0401003)the National Natural Science Foundation of China(Grant Nos.11804340,11774353,U19A2093,and U1732274)the CAS/SAFEA International Partnership Program for Creative Research Teams of China。
文摘Tunable carrier density plays a key role in the investigation of novel transport properties in three-dimensional topological semimetals.We demonstrate that the carrier density,as well as the mobility,of Dirac semimetal Cd_(3)As_(2) nanoplates can be effectively tuned via in situ thermal treatment at 350 K for one hour,resulting in non-monotonic evolution by virtue of the thermal cycling treatments.The upward shift of Fermi level relative to the Dirac nodes blurs the surface Fermi-arc states,accompanied by an anomalous phase shift in the oscillations of bulk states,due to a change in the topology of the electrons.Meanwhile,the oscillation peaks of bulk longitudinal magnetoresistivity shift at high fields,due to their coupling to the oscillations of the surface Fermi-arc states.Our work provides a thermal control mechanism for the manipulation of quantum states in Dirac semimetal Cd_(3)As_(2) at high temperatures,via their carrier density.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFA1406102,and 2022YFA1602603)the National Natural Science Foundation of China(Grant Nos.12374049,12174397,12204420,12204004,12174395,U19A2093,and 12004004)+3 种基金the Natural Science Foundation of Anhui Province(Grant Nos.2308085MA16,and 2308085QA18)the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures(Grant No.JZHKYPT-2021-08)supported by the Youth Innovation Promotion Association CAS(Grant No.2020443)supported by the High Magnetic Field Laboratory of Anhui Province under Contract No.AHHM-FX-2021-03。
文摘van der Waals(vdW)semiconductors have gained significant attention due to their unique physical properties and promising applications,which are embedded within distinct crystallographic symmetries.Here,we report a pressure-induced crystallineamorphization-recrystallization transition under compression in binary vdW semiconductor SiP.Upon compression to 52 GPa,bulk SiP undergoes a consecutive phase transition from pristine crystalline to amorphous phase,ultimately to recrystallized phase.By employing synchrotron X-ray diffraction experiments in conjunction with high-pressure crystal structure searching techniques,we reveal that the recrystallized Si P hosts a tetragonal structure(space group I4mm)and further transforms partially into a cubic phase(space group Fm3m).Consistently,electrical transport and alternating-current magnetic susceptibility measurements indicate the presence of three superconducting phases,which are embedded in separate crystallographic symmetries—the amorphous,tetragonal,and cubic structures.Furthermore,a high superconducting transition temperature of 12.3 K is observed in its recovered tetragonal phase during decompression.Our findings uncover a novel phase evolution path and elucidate a pressure-engineered structure-property relationship in vdW semiconductor SiP.These results not only offer a new platform to explore the transformation between different structures and functionalities,but also provide new opportunities for the design and exploration of advanced devices based on vdW materials.
基金supported by the National Natural Science Foundation of China(No.51902001)the Recruitment Program for Leading Talent Team of Anhui Province(2019-16)+1 种基金the Natural Science Foundation of Anhui Province(No.1908085QE17)the Open Research Fund of Advanced Laser Technology Laboratory of Anhui Province(No.AHL2020KF02).
文摘Broadband photodetectors with polarization-sensitive ability have received extraordinary attention for modern optoelectronic devices.Ideal photodetectors should possess high responsivity,fast response,and good stability,which are rare to meet at the same time in one low-symmetric two-dimentional(2D)material.In this work,neodymium diantimonides(RSb_(2)),a member of light rare-earth diantimonides RSb_(2)(R=La–Nd,Sm)with low-symmetry structure,is introduced as a fascinating highly anisotropic 2D material for broadband detection(532 nm to 4μm).The photodetector exhibits a responsivity of 0.49 mA·W^(−1)with 15μs response time at 532 nm and highly stable performance under ambient conditions over 8 months.Furthermore,we identify the polarization-sensitive photoresponse of the detector and demonstrate a high anisotropic factor~1.6.In addition,strong inplane anisotropy is revealed by anisotropic phonon response and the photodetection mechanism is investigated by scanning photocurrent microscopy measurements.This pioneer work on RSb_(2)paves the way for further exploration of 2D RSb_(2)for high performance polarized photodetectors with fast photothermoelectric response.
基金supported by the National Natural Science Foundation of China(Grant Nos.11804343,and 11974021)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-SW-M01)。
文摘Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets.They are then proposed to be utilized as binary bits to build racetrack memory devices.The ability to manipulate the two magnetic objects controllably by current in nanostructures is the prerequisite to realize the device.Here,we demonstrate by numerical simulations that a magnetic bobber and a skyrmion tube can be transformed to each other using spinpolarized current in nanostripes with stepped shape.We also show such stepped nanostructures can be readily applied as the write head for the skyrmion-bobber-based racetrack memory.
基金supported by the National Key R&D Program of China(2022YFA1403603)the National Natural Science Foundation of China(12174396,12104123,1197402,12204006,and 12241406)+5 种基金the National Natural Science Funds for Distinguished Young Scholar(52325105)Anhui Provincial Natural Science Foundation(2308085Y32 and 2108085QA21)Natural Science Project of Colleges and Universities in Anhui Province(2022AH030011)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB33030100)CAS Project for Young Scientists in Basic Research(YSBR-084)Systematic Fundamental Research Program Leveraging Major Scientific and Technological Infrastructure,Chinese Academy of Sciences(JZHKYPT-2021-08)。
基金supported by the National Natural Science Foundation of China (61825401 and 91964201)the Innovation Program for Quantum Science and Technology (2021ZD0302403)。
基金by the National Science Foundation and the Ministry of Science and Technology of China and the Penn.State MRSEC under NSF grant DMR-0820404.
文摘Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb fi lms using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques.We observed novel magnetoresistance oscillations below the superconducting transition temperature(TC)of the bridges.The oscillations which were not seen in the crystalline Pb fi lmsmay originate from the inhomogeneity of superconductivity induced by the applied magnetic fi elds on approaching the normal state,or the degradation of fi lm quality by thermal evolution.
基金supported by the National Key Research and Development Program of China(2016YFA0401003)the National Natural Science Foundation of China(11774353,11574320,11204312,11674331,11474289,11804340,and U1732274)+3 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017483)the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(2018CXFX002)the Chinese Academy of Sciences Pioneer Hundred Talents Programthe Natural Science Foundation of Anhui Province(1908085QA15)
文摘We present the systematic de Haas–van Alphen(d Hv A) quantum oscillations studies on the recently discovered topological Dirac semimetal pyrite PtBi2 single crystals. Remarkable d Hv A oscillations are emerged at a low field about 1.5 T. From the analyses of the d Hv A oscillations, we extract the high quantum mobilities, light effective masses and phase shift factors for the Dirac fermions in pyrite PtBi2. From the angular dependence of the d Hv A oscillations, we map out the topology of the Fermi surface.Furthermore, we identify two additional oscillation frequencies that are not probed by the Sd H oscillations, which provides us with opportunities to further understand its Fermi surface topology.
文摘The single crystalline nanostructure of organic semiconductors provides a very promising class of materials for applications in modern optoelectronic devices. However, morphology control and optoelectronic property modulation of high quality single crystalline samples remain a challenge. Here, we report the morphology-controlled growth of single crystalline nanorod arrays of perylene- 3,4,9,10-tetracarboxylic dianhydride (IrFCDA). We demonstrate that, unlike FTCDA film, PTCDA nanorods exhibits optical waveguide features, enhanced absorption, and Frenkel excitation emission in the visible region. Additionally, we measured the electrical properties of PTCDA nanorods, including the conductivity along the growth direction of the nanorod, which is roughly 0.61 S-m i (much higher than that of pure crystalline PTCDA films).
基金supported by the National Natural Science Foundation of China (Grant Nos. U1932155, 11874136, 11874137, and U19A2093)the National Key Projects for Research and Development of China (Grant No. 2019YFA0308602)+1 种基金the Key R&D Program of Zhejiang Province China (Grant No. 2021C01002)supported by an open program from Wuhan National High Magnetic Field Center (Grant No. 2016KF03)。
文摘Anomalous Nernst effect, as a thermal partner of anomalous Hall effect, is particularly sensitive to the Berry curvature anomaly near the Fermi level, and has been used to probe the topological nature of quantum materials. In this work, we report the observation of both effects in the ferromagnetic Weyl-semimetal Fe_(3-δ)GeTe_(2) with tunable Fe vacancies. With decreasing Fe vacancies,the anomalous Hall conductivity evolves as a function of the longitudinal conductivity from the hopping region to the region where the intrinsic Berry curvature contribution dominates. Concomitant evolutions in the anomalous Nernst signal and the anomalous off-diagonal thermoelectric coefficient are observed below the Curie temperature, displaying a unique sign change caused by the Fe vacancies. Combining these results with first-principles calculations, we argue that the Fe-vacancy concentration plays a unique role in simultaneously tuning the chemical potential and ferromagnetism, which in turn controls the Berry curvature contribution in this family of ferromagnetic topological semimetals.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A2093,11904002,and U2032163)the National Key Research and Development Program of China(Grant No.2021YFA1600201)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021117)。
文摘The superconductivity and nontrivial topological electronic state are key hallmarks of topological superconductors.Here,we focus on the transport signals of possible topological surface state in the topological superconductor candidate β-PdBi_(2) nanoflake with a thickness of 21 nm.The resistance demonstrates a semiconductor-metal transition followed by an upturned behavior as the temperature decreases.A large and unsaturated longitudinal magnetoresistance(MR),accompanied by distinct Shubnikov-de Hass oscillation in Hall resistance,is observed.An analysis of Hall resistance reveals that the carriers present the characteristics of relativistic particles with small effective mass and extremely high mobility.The angle-dependent quantum oscillations demonstrate a two-dimensional Fermi surface topology.A giant anisotropic MR as large as 98%is detected when rotating the magnetic field.These results provide the possible transport signals of a nontrivial topological electronic state,establishing a further understanding of the topological properties of the low-dimensional topological superconductor candidate β-PdBi_(2).