The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(...The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.展开更多
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundament...Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (M000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (TOO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (-10-7 to 104 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.展开更多
Purpose The low-energy X-ray telescope(LE)is a main instrument of the Insight-HXMT mission and consists of 96 swept charge devices covering the 1–10 keV energy band.The energy gain and resolution are continuously cal...Purpose The low-energy X-ray telescope(LE)is a main instrument of the Insight-HXMT mission and consists of 96 swept charge devices covering the 1–10 keV energy band.The energy gain and resolution are continuously calibrated by analyzing Cassiopeia A(Cas A)and blank sky data,while the effective areas are also calibrated with the observations of the Crab Nebula.In this paper,we present the evolution of the in-orbit performances of LE in the first 5 years since launch.Methods The Insight-HXMT data analysis software package(HXMTDAS)is utilized to extract the spectra of Cas A,blank sky,and Crab Nebula using different good time interval selections.We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec.After updating the energy gain calibration in CALibration DataBase(CALDB),we rerun the Cas A data to obtain the energy resolution.An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula.Results The energy gain,resolution,and effective areas are calibrated every month.The corresponding calibration results are duly updated in CALDB,which can be downloaded and used for the analysis of Insight-HXMT data.Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results.Conclusion LE is a well-calibrated X-ray telescope working in 1–10 keV band.The uncertainty of LE gain is less than 20eV in 2–9 keV band,and the uncertainty of LE resolution is less than 15eV.The systematic errors of LE,compared to the model of the Crab Nebula,are lower than 1.5%in 1–10 keV.展开更多
As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band(1-250 ke V) slat-collimator-based X-ray as...As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band(1-250 ke V) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 Me V. It was designed to perform pointing, scanning and gamma-ray burst(GRB)observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed.Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.展开更多
In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m...In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.展开更多
The Medium Energy X-ray telescope(ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope(Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive i...The Medium Energy X-ray telescope(ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope(Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 ke V with a total geometrical area of 952 cm^2. The application specific integrated circuit(ASIC) chip, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views(FOVs) for the telescope, 1°×4°, 4°×4°,and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components.The energy resolution of ME is ~3 ke V at 17.8 ke V(FWHM) and the time resolution is 255 μs. In this paper, we introduce the design and performance of ME.展开更多
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting wh...In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.展开更多
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be rep...In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.展开更多
基金supported by the National Key R&D Program of China(2022YFF0711404,2021YFA0718500)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)+2 种基金the National Natural Science Foundation of China(NSFC,Grant No.U1938106)the open subject of the National HEP Data Center(E029S2S1)support from the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(grant Nos.XDA15360102,XDA15360300,XDA15052700 and E02212A02S)。
文摘The Gravitational wave burst high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a dedicated mission for monitoring high-energy transients.Here we report the design of the GECAM Scientific Ground Segment(GSGS)in terms of the scientific requirements,including the architecture,the external interfaces,the main function,and workflow.Judging from the analysis and verification results during the commissioning phase,the GSGS functions well and is able to monitor the status of the payloads,adjust the parameters,develop the scientific observation plans,generate the scientific data products,analyze the data,etc.Thus,the on-orbit operation and scientific researches of GECAM are guaranteed.
基金supported by the National Program on Key Research and Development Project(Grant No.2016YFA0400800)from the Ministry of Science and Technology of China(MOST)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23040400)the Hundred Talent Program of Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant Nos.11233001,11503027,11403026,11473027,and11733009)
文摘Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (M000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (TOO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (-10-7 to 104 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
基金support from the National Program on Key Research and Development Project(Grant No.2021YFA0718500)from the Minister of Science and Technology of China(MOST)The authors thank supports from the National Natural Science Foundation of China under Grants 12273043,U1838201,U1838202,U1938102,and U1938108This work was partially supported by the International Partnership Program of Chinese Academy of Sciences(Grant No.113111KYSB20190020).
文摘Purpose The low-energy X-ray telescope(LE)is a main instrument of the Insight-HXMT mission and consists of 96 swept charge devices covering the 1–10 keV energy band.The energy gain and resolution are continuously calibrated by analyzing Cassiopeia A(Cas A)and blank sky data,while the effective areas are also calibrated with the observations of the Crab Nebula.In this paper,we present the evolution of the in-orbit performances of LE in the first 5 years since launch.Methods The Insight-HXMT data analysis software package(HXMTDAS)is utilized to extract the spectra of Cas A,blank sky,and Crab Nebula using different good time interval selections.We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec.After updating the energy gain calibration in CALibration DataBase(CALDB),we rerun the Cas A data to obtain the energy resolution.An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula.Results The energy gain,resolution,and effective areas are calibrated every month.The corresponding calibration results are duly updated in CALDB,which can be downloaded and used for the analysis of Insight-HXMT data.Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results.Conclusion LE is a well-calibrated X-ray telescope working in 1–10 keV band.The uncertainty of LE gain is less than 20eV in 2–9 keV band,and the uncertainty of LE resolution is less than 15eV.The systematic errors of LE,compared to the model of the Crab Nebula,are lower than 1.5%in 1–10 keV.
基金project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)support from the National Key Research and Development Program of China(Grant No.2016YFA0400800)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA04010202,XDA04010300,and XDB23040400)the National Natural Science Foundation of China(Grant Nos.U1838201,and U1838102).
文摘As China’s first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band(1-250 ke V) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 Me V. It was designed to perform pointing, scanning and gamma-ray burst(GRB)observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed.Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)support by ASI, under the dedicated eXTP agreements and agreement ASI-INAF (Grant No. 2017-14-H.O.)+3 种基金by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft- und Raumfahrt, the German Aerospce Center (DLR)support of Science Centre (Grant No. 2013/10/M/ST9/00729)support from MINECO (Grant No. ESP2017-82674-R) and FEDER funds
文摘In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.
基金the Strategic Priority Research Program on Space Science,the Chinese Academy of Sciences(Grant No.XDA040102).
文摘The Medium Energy X-ray telescope(ME) is one of the three main telescopes on board the Insight hard X-ray modulation telescope(Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 ke V with a total geometrical area of 952 cm^2. The application specific integrated circuit(ASIC) chip, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views(FOVs) for the telescope, 1°×4°, 4°×4°,and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components.The energy resolution of ME is ~3 ke V at 17.8 ke V(FWHM) and the time resolution is 255 μs. In this paper, we introduce the design and performance of ME.
基金supported by the Royal Society,ERC Starting(Grant No.639217)he European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Global Fellowship(Grant No.703916)+10 种基金the National Natural Science Foundation of China(Grant Nos.11233001,11773014,11633007,11403074,11333005,11503008,and 11590781)the National Basic Research Program of China(Grant No.2015CB857100)NASA(Grant No.NNX13AD28A)an ARC Future Fellowship(Grant No.FT120100363)the National Science Foundation(Grant No.PHY-1430152)the Spanish MINECO(Grant No.AYA2016-76012-C3-1-P)the ICCUB(Unidad de Excelencia’Maria de Maeztu’)(Grant No.MDM-2014-0369)EU’s Horizon Programme through a Marie Sklodowska-Curie Fellowship(Grant No.702638)the Polish National Science Center(Grant Nos.2015/17/B/ST9/03422,2015/18/M/ST9/00541,2013/10/M/ST9/00729,and 2015/18/A/ST9/00746)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the NWO Veni Fellowship(Grant No.639.041.647)
文摘In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
基金support from ERC Starting (Grant No. 639217 CSINEUTRONSTAR)support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship+2 种基金suported by the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Global Fellowship (Grant No. 703916)supported in part by the DFG through Grant SFB 1245 and the ERC (Grant No. 307986 STRONGINT)support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)
文摘In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.