期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ethanol electrooxidation on Pd/C nanoparticles in alkaline media 被引量:2
1
作者 Fangfang Zhang Debi zhou mingda zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期71-76,共6页
Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmissi... Carbon-supported Pd nanoparticles were prepared by microwave heating-glycol reduction method, and characterized by a wide array of experimental techniques including X-ray diffraction spectroscopy(XRD) and transmission electron microscopy(TEM). The electrooxidation behaviors of ethanol on the Pd/C electrode in alkaline media were investigated using cyclic voltammetry(CV), chronoamperometry(CA), electrochemical impedance spectroscopy(EIS) and single cell performance methods. Pd/C electrode for ethanol oxidation showed high electro-catalytic activity and long term stability. However, it is observed that the current density decreases with the increasing of the potential and negative impedance presents in the potential from-0.1 to0.1 V. The decreasing current density and the negative impedance could be due to the adsorbed intermediates species that inhibited the further oxidation of ethanol. Based on the chemical reaction analysis and EIS spectra, equivalent circuits relating to various potential zones have been obtained. These results reveal the dynamic adsorption of intermediates species on Pd surfaces. Significantly, it is clarified that the adsorption behavior begins from the maximum catalysis of electro-catalysis and ends in the formation of the palladium(II) oxide layer on the electrode surface. 展开更多
关键词 Catalyst Adsorption behavior Ethanol oxidation Negative impedance
下载PDF
Broadening environmental research in the era of accurate protein structure determination and predictions
2
作者 mingda zhou Tong Wang +4 位作者 Ke Xu Han Wang Zibin Li Wei-xian Zhang Yayi Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第7期169-178,共10页
The deep-learning protein structure prediction method AlphaFold2 has garnered enormous attention beyond the realm of structural biology,for its groundbreaking contribution to solving the"protein foiding problem&q... The deep-learning protein structure prediction method AlphaFold2 has garnered enormous attention beyond the realm of structural biology,for its groundbreaking contribution to solving the"protein foiding problem"In this perspective,we explore the connection between protein structure studies and environmental research,delving into the potential for addressing specific environmental challenges.Proteins are promising for environmental applications because of the functional diversity endowed by their structural complexity.However,structural studies on proteins with environmental significance remain scarce.Here,we present the opportunity to study proteins by advancing experimental determination and deep-learning prediction methods.Specifically,the latest progress in environmental research via cryogenic electron microscopy is highlighted.It allows us to determine the structure of protein complexes in their native state within cells at molecular resolution,revealing environmentally-associated structural dynamics.With the remarkable advancements in computational power and experimental resolution,the study of protein structure and dynamics has reached unprecedented depth and accuracy.These advancements will undoubtedly accelerate the establishment of comprehensive environmental protein structural and functional databases.Tremendous opportunities for protein engineering exist to enable innovative solutions for environmental applications,such as the degradation of persistent contaminants,and the recovery of valuable metals as well as rare earth elements. 展开更多
关键词 Environmental proteins Protein structure Cryogenic electron microscopy Protein structure prediction Protein engineering Artificial Intelligence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部