A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a ...A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.展开更多
In this paper,optimal switching and control approaches are investigated for switched systems with infinite-horizon cost functions and unknown continuous-time subsystems.At first,for switched systems with autonomous su...In this paper,optimal switching and control approaches are investigated for switched systems with infinite-horizon cost functions and unknown continuous-time subsystems.At first,for switched systems with autonomous subsystems,the optimal solution based on the finite-horizon HJB equation is proposed and a data-driven optimal switching algorithm is designed.Then,for the switched systems with subsystem inputs,a data-driven optimal control approach based on the finite-horizon HJB equation is proposed.The data-driven approaches approximate the optimal solutions online by means of the system state data instead of the subsystem models.Moreover,the convergence of the two approaches is analyzed.Finally,the validity of the two approaches is demonstrated by simulation examples.展开更多
基金supported by the National Natural Science Foundation of China(61304097)the Projects of Major International(Regional)Joint Research Program NSFC(61120106010)the Foundation for Innovation Research Groups of the National National Natural Science Foundation of China(61321002)
文摘A hierarchical particle filter(HPF) framework based on multi-feature fusion is proposed.The proposed HPF effectively uses different feature information to avoid the tracking failure based on the single feature in a complicated environment.In this approach,the Harris algorithm is introduced to detect the corner points of the object,and the corner matching algorithm based on singular value decomposition is used to compute the firstorder weights and make particles centralize in the high likelihood area.Then the local binary pattern(LBP) operator is used to build the observation model of the target based on the color and texture features,by which the second-order weights of particles and the accurate location of the target can be obtained.Moreover,a backstepping controller is proposed to complete the whole tracking system.Simulations and experiments are carried out,and the results show that the HPF algorithm with the backstepping controller achieves stable and accurate tracking with good robustness in complex environments.
基金This work was supported by the National Natural Science Foundation of China(no.61673065).
文摘In this paper,optimal switching and control approaches are investigated for switched systems with infinite-horizon cost functions and unknown continuous-time subsystems.At first,for switched systems with autonomous subsystems,the optimal solution based on the finite-horizon HJB equation is proposed and a data-driven optimal switching algorithm is designed.Then,for the switched systems with subsystem inputs,a data-driven optimal control approach based on the finite-horizon HJB equation is proposed.The data-driven approaches approximate the optimal solutions online by means of the system state data instead of the subsystem models.Moreover,the convergence of the two approaches is analyzed.Finally,the validity of the two approaches is demonstrated by simulation examples.