期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Highly efficient hybrid warm white organic light-emitting diodes using a blue thermally activated delayed fluorescence emitter: exploiting the external heavy-atom effect 被引量:7
1
作者 Dongdong Zhang Lian Duan +3 位作者 Yunge Zhang minghan cai Deqiang Zhang Yong Qiu 《Light(Science & Applications)》 SCIE EI CAS CSCD 2015年第1期562-568,共7页
To attain high efficiencies in hybrid white organic light-emitting diodes(WOLEDs),mutual quenching of the fluorophors and phosphors should be minimized.Efforts have been devoted to reducing the triplet quenching of ph... To attain high efficiencies in hybrid white organic light-emitting diodes(WOLEDs),mutual quenching of the fluorophors and phosphors should be minimized.Efforts have been devoted to reducing the triplet quenching of phosphors;however,the quenching of fluorophors by the external heavy-atom effect(EHA)introduced by the phosphors is often ignored.Here,we observed that conventional fluorophors and fluorophors with thermally activated delayed fluorescence(TADF)behave differently in the presence of EHA perturbers.The efficiencies of the conventional fluorophors suffer greatly from the EHA,whereas the TADF fluorophors exhibit negligible changes,which makes TADF materials ideal fluorophors for hybrid devices.WOLEDs using a blue TADF fluorophor and an orange phosphor achieve a maximum forward viewing external quantum efficiency of 19.6%and a maximum forward viewing power efficiency of 50.2 lm W^(-1),among the best values for hybrid WOLEDs.This report is the first time that the EHA effect has been considered in hybrid WOLEDs and that a general strategy toward highly efficient hybrid WOLEDs with simple structures is proposed. 展开更多
关键词 external heavy-atom effect hybrid white OLEDs thermally activated delayed fluorescenceexternal heavy-atom effect hybrid white OLEDs thermally activated delayed fluorescence
原文传递
Efficient red phosphorescent OLEDs based on the energy transfer from interface exciplex: the critical role of constituting molecules 被引量:4
2
作者 Xiaozeng Song Dongdong Zhang +2 位作者 Tianyu Huang minghan cai Lian Duan 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第7期836-843,共8页
A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red pho... A novel acceptor material,9-(4′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-3-yl)-9H-carbazole(o-DTPPC)was developed to form interface exciplex with commonly used donors,to maximize the performances of red phosphorescent organic light emitting diodes(PHOLEDs).It is found that the exciplex involving 4,4′-(cyclohexane-1,1-diyl)bis(N,N-di-p-tolylaniline)(TAPC)exhibits the most significant thermally activated delayed fluorescence(TADF)property,derived from the high triplet energy level as well as strong hole-transporting ability of TAPC.Intriguingly,it is the same donor-acceptor combination which achieved the highest device efficiency when adopted as the host for red PHOLEDs.Maximum efficiencies as high as31.36 cd A^(-1),17.95 lm W^(-1),and 21.01%for the current efficiency,power efficiency and external quantum efficiency,respectively with low efficiency roll-off were realized.The improved performance can be attributed to the efficient TADF properties of the interface exciplex-forming host constituting TAPC,benefiting the F?rster energy transfer.The article first underlines the importance of the constituting molecules in the interface exciplex-forming hosts,shedding new insight about the choice of interface exciplex as the host for PHOLEDs,which may lead to even higher performances,paving their ways towards practical applications. 展开更多
关键词 OLED 磷光 接口 键角 分子 组成 能量 二极管
原文传递
Red phosphorescent organic light-emitting diodes based on a novel host material with thermally activated delayed fluorescent properties 被引量:2
3
作者 Yilang Li Dongdong Zhang +2 位作者 Yunge Zhang minghan cai Lian Duan 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第6期684-691,共8页
High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid ... High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors’ concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-11-yl)-1,3,5-triazine (BCPICT), with thermally activated delayed fluorescent(TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%.When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m2. 展开更多
关键词 基质材料 延迟荧光 有机发光二极管 热激活 荧光性质 磷光 有机电致发光器件 基础
原文传递
Investigation on two triphenylene based electron transport materials
4
作者 minghan cai Chongguang Zhao +2 位作者 Dongdong Zhang Xiaozeng Song Lian Duan 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第6期775-783,共9页
Promoting electron mobility is the key to designing high performance electron transport materials(ETMs). Formation of intermolecular interaction can be helpful to enhance their electron mobilities as a result of more ... Promoting electron mobility is the key to designing high performance electron transport materials(ETMs). Formation of intermolecular interaction can be helpful to enhance their electron mobilities as a result of more ordered molecular stacking.Here, to reveal the inherent influence of intermolecular π-π stacking on the electron mobilities, we designed two ETMs, namely,2,4-diphenyl-6-[3-(2-triphenylenyl)phenyl]-1,3,5-triazine(TPTRZ) and 2,4-diphenyl-6-[4′-(2-triphenylenyl)[1,1′-biphenyl]-3-yl]-1,3,5-triazine(TPPTRZ). Thermal, photophysical and electrochemical measurement results indicate they are good ETM candidates. Additionally, TPTRZ and TPPTRZ exhibit high electron mobilities of 3.60×10^(-5) and 3.58×10^(-5) cm^2V-1 s^(-1), respectively, at an electric field of 7×10~5 V cm^(-1). By taking X-ray single crystal structure, theoretical calculation and time of flight(TOF) results into consideration, it is revealed that strong intermolecular π-π stacking induced by planar triphenylene and triphenyltriazine units renders TPTRZ and TPPTRZ small energetic and positional disorder parameters, and results in their high electron mobilities thereby. By further enhancing intermolecular π-π stacking, ETMs with even higher electron mobilities can thus be anticipated. 展开更多
关键词 organic LIGHT-EMITTING diode ELECTRON transport material ELECTRON mobility π-π STACKING INTERMOLECULAR interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部