Verticillium wilt,caused by Verticillium dahliae,seriously restricts the yield and quality improvement of cotton.Previous studies have revealed the involvement of WRKY members in plant defense against V.dahliae,but th...Verticillium wilt,caused by Verticillium dahliae,seriously restricts the yield and quality improvement of cotton.Previous studies have revealed the involvement of WRKY members in plant defense against V.dahliae,but the underlying mechanisms involved need to be further elucidated.Here,we demonstrated that Gossypium hirsutum WRKY DNA-binding protein 33(GhWRKY33) functions as a negative regulator in plant defense against V.dahliae.GhWRKY33 expression is induced rapidly by V.dahliae and methyl jasmonate,and overexpression of GhWRKY33 reduces plant tolerance to V.dahliae in Arabidopsis.Quantitative RT-PCR analysis revealed that expression of several JA-associated genes was significantly repressed in GhWRKY33 overexpressing transgenic plants.Yeast one-hybrid analysis revealed that GhWRKY33 may repress the transcription of both AtERF1 and GhERF2 through its binding to their promoters.Protein-protein interaction analysis suggested that GhWRKY33 interacts with G.hirsutum JASMONATE ZIM-domain protein 3(GhJAZ3).Similarly,overexpression of GhJAZ3 also decreases plant tolerance to V.dahliae.Furthermore,GhJAZ3 acts synergistically with GhWRKY33 to suppress both AtERF1 and GhERF2 expression.Our results imply that GhWRKY33 may negatively regulate plant tolerance to V.dahliae via the JA-mediated signaling pathway.展开更多
Establishing structural load spectrum under actual operating conditions is a major problem in structural fatigue life analysis. This study introduces the load measuring method for the bogie frame structure. The load-m...Establishing structural load spectrum under actual operating conditions is a major problem in structural fatigue life analysis. This study introduces the load measuring method for the bogie frame structure. The load-measuring frame based on quasi-static can measure different load systems synchronously. The t-test method is employed to evaluate the least test time of deducing the parent distribution. In order to fit the load spectrum distribution accurately, the kernel density estimation method is employed which is based on the sample characteristics. The expansion factor method is used to deduce the maximum load. The formula of standardized load spectrum derives from the deduced maximum load, the linear factor between operating condition length and cumulative frequency and the parent distribution of each load system. The damage consistency criterion is performed by solving the objective function with constraint conditions. The calibrated damage provides a suitable representation of the real damage under actual operating conditions. By processing and analyzing the load spectrum and stress spectrum data of the measured lines, it is verified that the standardized load spectrum established in this paper is superior to the European specification and the Japanese specification in evaluating the fatigue reliability of the structure.展开更多
SERRATE(SE)plays critical roles in RNA metabolism and plant growth regulation.However,its function in stresseresponse processes remains largely unknown.Here,we examined the regulatory role of SE using the se-1 mutant ...SERRATE(SE)plays critical roles in RNA metabolism and plant growth regulation.However,its function in stresseresponse processes remains largely unknown.Here,we examined the regulatory role of SE using the se-1 mutant and its complementation line under saline conditions.The expression of SE was repressed by salt treatment at both mRNA and protein levels.After treatment with different NaCl concentrations,the se-1 mutants showed increased sensitivity to salinity.This heightened sensitivity was evidenced by decreased germination,reduced root growth,more serious chlorosis,and increased conductivity of the mutants compared with the wild type.Further analysis revealed that SE regulates the pre-mRNA splicing of several well-characterized marker genes associated with salt stress tolerance.Our data thus imply that SE may function as a key component in plant response to salt stress by modulating the splicing of salt stress-associated genes.展开更多
基金This work was supported by the National key R&D plan(2016YFD0101006)Yunnan Fundamental Research Projects(2019FA010).
文摘Verticillium wilt,caused by Verticillium dahliae,seriously restricts the yield and quality improvement of cotton.Previous studies have revealed the involvement of WRKY members in plant defense against V.dahliae,but the underlying mechanisms involved need to be further elucidated.Here,we demonstrated that Gossypium hirsutum WRKY DNA-binding protein 33(GhWRKY33) functions as a negative regulator in plant defense against V.dahliae.GhWRKY33 expression is induced rapidly by V.dahliae and methyl jasmonate,and overexpression of GhWRKY33 reduces plant tolerance to V.dahliae in Arabidopsis.Quantitative RT-PCR analysis revealed that expression of several JA-associated genes was significantly repressed in GhWRKY33 overexpressing transgenic plants.Yeast one-hybrid analysis revealed that GhWRKY33 may repress the transcription of both AtERF1 and GhERF2 through its binding to their promoters.Protein-protein interaction analysis suggested that GhWRKY33 interacts with G.hirsutum JASMONATE ZIM-domain protein 3(GhJAZ3).Similarly,overexpression of GhJAZ3 also decreases plant tolerance to V.dahliae.Furthermore,GhJAZ3 acts synergistically with GhWRKY33 to suppress both AtERF1 and GhERF2 expression.Our results imply that GhWRKY33 may negatively regulate plant tolerance to V.dahliae via the JA-mediated signaling pathway.
基金This work was supported by the National Natural Science Foundation of China (Grant 51565013).
文摘Establishing structural load spectrum under actual operating conditions is a major problem in structural fatigue life analysis. This study introduces the load measuring method for the bogie frame structure. The load-measuring frame based on quasi-static can measure different load systems synchronously. The t-test method is employed to evaluate the least test time of deducing the parent distribution. In order to fit the load spectrum distribution accurately, the kernel density estimation method is employed which is based on the sample characteristics. The expansion factor method is used to deduce the maximum load. The formula of standardized load spectrum derives from the deduced maximum load, the linear factor between operating condition length and cumulative frequency and the parent distribution of each load system. The damage consistency criterion is performed by solving the objective function with constraint conditions. The calibrated damage provides a suitable representation of the real damage under actual operating conditions. By processing and analyzing the load spectrum and stress spectrum data of the measured lines, it is verified that the standardized load spectrum established in this paper is superior to the European specification and the Japanese specification in evaluating the fatigue reliability of the structure.
基金supported by the National key R&D plan(2016YFD0101006)Natural Science Foundation of China(31671275)+1 种基金Candidates of the Young and Middle-Aged Academic Leaders of Yunnan Province(2015HB094)Yunnan Fundamental Research Projects(grant NO.2017FB047 and 2019FA010).
文摘SERRATE(SE)plays critical roles in RNA metabolism and plant growth regulation.However,its function in stresseresponse processes remains largely unknown.Here,we examined the regulatory role of SE using the se-1 mutant and its complementation line under saline conditions.The expression of SE was repressed by salt treatment at both mRNA and protein levels.After treatment with different NaCl concentrations,the se-1 mutants showed increased sensitivity to salinity.This heightened sensitivity was evidenced by decreased germination,reduced root growth,more serious chlorosis,and increased conductivity of the mutants compared with the wild type.Further analysis revealed that SE regulates the pre-mRNA splicing of several well-characterized marker genes associated with salt stress tolerance.Our data thus imply that SE may function as a key component in plant response to salt stress by modulating the splicing of salt stress-associated genes.