The formation of tribolayers may play significant influences on fretting wear.At elevated temperature,the adhesion among wear debris and the increased diffusion rate facilitate the formation of tribolayers.However,the...The formation of tribolayers may play significant influences on fretting wear.At elevated temperature,the adhesion among wear debris and the increased diffusion rate facilitate the formation of tribolayers.However,the intensification of oxidation at elevated temperature and the low diffusion rate in oxides may play an adverse role.The present study aims to investigate the role of temperature in tribolayers in fretting wear using aγ-TiAl alloy.Scanning electron microscope,energy dispersive spectrometer,Raman spectrometer,transmission electron microscope and nanoindentation were utilized to investigate the wear debris,tribolayers,and wear scars.The fretting tests showed that,compared with that at room temperature(RT)and 350℃,significant reduction in wear rate and decrease in the fluctuation of friction coefficient occurred at 550 and 750℃.It was further revealed that when temperature raised from room temperature(RT)to 750℃,the oxidation of the wear debris increased slightly and the diffusion coefficients increased prominently,which facilities the formation of well tribo-sintered tribolayers.The well tribo-sintered tribolayers presented homogenous structure,nanocrystalline grains with excellent mechanical properties,and resulted in the improvement in the fretting wear resistance of theγ-TiAl alloy at 550 and 750℃.展开更多
基金supported by the Tribology Science Fund of State Key Laboratory of Tribology in Advanced Equipment(SKLT)(contract number:SKLTKF21B01)the National Natural Science Foundation of China(No.52175165)the Natural Science Foundation of Jiangsu Province,China(Project No.BK20200470).
文摘The formation of tribolayers may play significant influences on fretting wear.At elevated temperature,the adhesion among wear debris and the increased diffusion rate facilitate the formation of tribolayers.However,the intensification of oxidation at elevated temperature and the low diffusion rate in oxides may play an adverse role.The present study aims to investigate the role of temperature in tribolayers in fretting wear using aγ-TiAl alloy.Scanning electron microscope,energy dispersive spectrometer,Raman spectrometer,transmission electron microscope and nanoindentation were utilized to investigate the wear debris,tribolayers,and wear scars.The fretting tests showed that,compared with that at room temperature(RT)and 350℃,significant reduction in wear rate and decrease in the fluctuation of friction coefficient occurred at 550 and 750℃.It was further revealed that when temperature raised from room temperature(RT)to 750℃,the oxidation of the wear debris increased slightly and the diffusion coefficients increased prominently,which facilities the formation of well tribo-sintered tribolayers.The well tribo-sintered tribolayers presented homogenous structure,nanocrystalline grains with excellent mechanical properties,and resulted in the improvement in the fretting wear resistance of theγ-TiAl alloy at 550 and 750℃.