期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nanoalloy as bifunctional oxygen electrocatalysts for zinc-air battery
1
作者 mingkuan xie Xin Xiao +7 位作者 Duojie Wu Cheng Zhen Chunsheng Wu Wenjuan Wang Hao Nian Fayan Li Meng Danny Gu Qiang Xu 《Nano Research》 SCIE EI CSCD 2024年第6期5288-5297,共10页
High-entropy alloy(HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties.The electronic structure regulation of HEAs plays a pivotal role in enhancing their elct... High-entropy alloy(HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties.The electronic structure regulation of HEAs plays a pivotal role in enhancing their elctrocatalytic ability.Herein,PtFeCoNiMn nanoparticles(NPs)with subtle lattice distortions are constructed on metal-organic framework-derived nitrogen-doped carbon by an ultra-rapid Joule heating process.Thanks to the modulated electronic structure and the inherent cocktail effect of HEAs,the as-synthesized PtFeCoNiMn/NC exhibits superior bifunctional electrocatalytic performance with a positive half-wave potential of 0.863 V vs.reversible hydrogen electrode(RHE)for oxygen reduction reaction and a low overpotential of 357 mV at 10 mA·cm^(-2)for oxygen evolution reaction.The assembled quasi-solid-state zinc-air battery using PtFeCoNiMn/NC as air electrode shows a high peak power density of 192.16 mW·cm^(-2),low charge−discharge voltage gap,and excellent durability over 500 cycles at 5 mA·cm^(-2).This work demonstrates an effective route for rational design of bifunctional nanostructured HEA electrocatalysts with favorable electronic structures,and opens up a fascinating directions for energy storage and conversion,and beyond. 展开更多
关键词 oxygen reduction reaction oxygen evolution reaction high-entropy nano-alloy zinc-air battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部