The glass-alumina composite coatings were successfully prepared on the K38G superalloy substrates.Their isothermal oxidation and thermal shock behavior at 1000 ℃ were characterized.With a post-annealing process at 8...The glass-alumina composite coatings were successfully prepared on the K38G superalloy substrates.Their isothermal oxidation and thermal shock behavior at 1000 ℃ were characterized.With a post-annealing process at 850 ℃,the composite coatings possessed an improved protective effect for the alloy substrates from isothermal oxidation and a higher resistance to thermal shock.Crystallization from the glass matrix and interfacial reaction between the matrix and alumina inclusions,which caused the composites more refractory and tough,accounted for this improvement.The micromechanisms for the formation of oxidation results of spinel ZnCr_2O_4 were also discussed.展开更多
The NiCrAlTi coatings free of N and with N incorporations were deposited on austenitic stainless steel304 L by magnetron sputtering in Ar and in gas mixture of Ar and N2,respectively.The N incorporated in the coatings...The NiCrAlTi coatings free of N and with N incorporations were deposited on austenitic stainless steel304 L by magnetron sputtering in Ar and in gas mixture of Ar and N2,respectively.The N incorporated in the coatings existed as nitride precipitates(from^3 vol.%to^17 vol.%)after vacuum annealing.All the NiCrAlTi coatings,whatever free of N or with N incorporations,exhibited better resistance against cavitation erosion than ion plating Ti N coating and the substrate 304 L in ultrasonic cavitation tests.The NiCrAlTi coating free of N incorporation presents superior cavitation erosion resistance.However,the nitrogen incorporation within the NiCrAlTi coatings showed negative effects on the resistance against cavitation erosion.展开更多
基金supported by the Knowledg Innovation Program of the Chinese Academy of Sciences Grant No. YYYJ-0912the National Natural Scienc Foundation of China,Grant No. 50774074
文摘The glass-alumina composite coatings were successfully prepared on the K38G superalloy substrates.Their isothermal oxidation and thermal shock behavior at 1000 ℃ were characterized.With a post-annealing process at 850 ℃,the composite coatings possessed an improved protective effect for the alloy substrates from isothermal oxidation and a higher resistance to thermal shock.Crystallization from the glass matrix and interfacial reaction between the matrix and alumina inclusions,which caused the composites more refractory and tough,accounted for this improvement.The micromechanisms for the formation of oxidation results of spinel ZnCr_2O_4 were also discussed.
基金the National Key Research and Development Program of China(No.2018YFB2003601)。
文摘The NiCrAlTi coatings free of N and with N incorporations were deposited on austenitic stainless steel304 L by magnetron sputtering in Ar and in gas mixture of Ar and N2,respectively.The N incorporated in the coatings existed as nitride precipitates(from^3 vol.%to^17 vol.%)after vacuum annealing.All the NiCrAlTi coatings,whatever free of N or with N incorporations,exhibited better resistance against cavitation erosion than ion plating Ti N coating and the substrate 304 L in ultrasonic cavitation tests.The NiCrAlTi coating free of N incorporation presents superior cavitation erosion resistance.However,the nitrogen incorporation within the NiCrAlTi coatings showed negative effects on the resistance against cavitation erosion.