This paper presents a novel multiple-outlier-robust Kalman filter(MORKF)for linear stochastic discretetime systems.A new multiple statistical similarity measure is first proposed to evaluate the similarity between two...This paper presents a novel multiple-outlier-robust Kalman filter(MORKF)for linear stochastic discretetime systems.A new multiple statistical similarity measure is first proposed to evaluate the similarity between two random vectors from dimension to dimension.Then,the proposed MORKF is derived via maximizing a multiple statistical similarity measure based cost function.The MORKF guarantees the convergence of iterations in mild conditions,and the boundedness of the approximation errors is analyzed theoretically.The selection strategy for the similarity function and comparisons with existing robust methods are presented.Simulation results show the advantages of the proposed filter.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61903097 and 61773133)。
文摘This paper presents a novel multiple-outlier-robust Kalman filter(MORKF)for linear stochastic discretetime systems.A new multiple statistical similarity measure is first proposed to evaluate the similarity between two random vectors from dimension to dimension.Then,the proposed MORKF is derived via maximizing a multiple statistical similarity measure based cost function.The MORKF guarantees the convergence of iterations in mild conditions,and the boundedness of the approximation errors is analyzed theoretically.The selection strategy for the similarity function and comparisons with existing robust methods are presented.Simulation results show the advantages of the proposed filter.