This paper investigates the stability analysis and antiwindup design problem for a class of discrete-time switched linear systems with time-varying norm-bounded uncertainties and saturating actuators by using the swit...This paper investigates the stability analysis and antiwindup design problem for a class of discrete-time switched linear systems with time-varying norm-bounded uncertainties and saturating actuators by using the switched Lyapunov function approach. Supposing that a set of linear dynamic output controllers have been designed to stabilize the switched system without considering its input saturation, we design antiwindup compensation gains in order to enlarge the domain of attraction of the closed-loop system in the presence of saturation. Then, in terms of a sector condition, the antiwindup compensation gains which aim to maximize the estimation of domain of attraction of the closed-loop system are presented by solving a convex optimization problem with linear matrix inequality (LMI) constraints. A numerical example is given to demonstrate the effectiveness of the proposed design method.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61174073,90816028)
文摘This paper investigates the stability analysis and antiwindup design problem for a class of discrete-time switched linear systems with time-varying norm-bounded uncertainties and saturating actuators by using the switched Lyapunov function approach. Supposing that a set of linear dynamic output controllers have been designed to stabilize the switched system without considering its input saturation, we design antiwindup compensation gains in order to enlarge the domain of attraction of the closed-loop system in the presence of saturation. Then, in terms of a sector condition, the antiwindup compensation gains which aim to maximize the estimation of domain of attraction of the closed-loop system are presented by solving a convex optimization problem with linear matrix inequality (LMI) constraints. A numerical example is given to demonstrate the effectiveness of the proposed design method.