期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hooke and Jeeves algorithm for linear support vector machine 被引量:1
1
作者 Yeqing Liu Sanyang Liu mingtao gu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期138-141,共4页
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while... Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves algorithm which adds pattern search after every iteration in coordinate descent method was applied to SVM and a global Newton algorithm was used to solve one-variable subproblems. We proved the convergence of the algorithm. Experimental results show Hooke and Jeeves' method does accelerate convergence specially for final convergence and achieves higher testing accuracy more quickly in classification. 展开更多
关键词 support vector machine CLASSIFICATION pattern search Hooke and Jeeves coordinate descent global Newton algorithm.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部