期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ultrahigh rate binder-free Na_3V_2(PO_4)_3/carbon cathode for sodium-ion battery 被引量:2
1
作者 Le Yang Wei Wang +2 位作者 mingxiang hu Jiaojing Shao Ruitao Lv 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1439-1445,共7页
Sodium ion batteries (SIBs) are very promising for large-scale energy storage in virtue of its high energy density, abundant sodium resources and low environmental impact, etc. However, it is still a big chal- lenge... Sodium ion batteries (SIBs) are very promising for large-scale energy storage in virtue of its high energy density, abundant sodium resources and low environmental impact, etc. However, it is still a big chal- lenge to develop high-performance and durable cathode materials for SIBs. Among different candidate materials, Na_3V_2(PO_4)_3 has attracted great attentions due to its high theoretical capacity (117 mAh/g), stable framework structure and excellent ionic conductivity. However, Na_3V_2(PO_4)_3 delivers inferior rate capability and cycling stability due to its poor electronic conductivity. In this work, free-standing Na_3V_2(PO_4)_3/carbon nanofiber membranes are synthesized by an electrospinning-sintering mute. The sample could deliver excellent cycling capability with specific capacity of 112 mAh/g at 1 C after 250 cycles and ultrahigh rate capability with 76.9 mAh/g even at 100 C, which is superior to many state-of- the-art SIB cathode materials. This can be attributed to the hierarchically distributed Na_3V_2(PO_4)_3 crystals in carbon nanofiber network, which possesses outstanding electronicfionic conductivity and thus leads to an ultrahigh rate capabilitY. 展开更多
关键词 Sodium-ion battery Free-standing cathode Na_3V_2(PO_4)_3 Carbon nanofiber ELECTROSPINNING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部