期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ionospheric disturbance analysis of the January 15,2022 Tonga eruption based on GPS data
1
作者 Jiafeng LI Kejie CHEN +4 位作者 Haishan CHAI Jian LIN Zhiyuan ZHOU Hai ZHU mingzhe lyu 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第8期1798-1813,共16页
Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-f... Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-field(<1000 km),regional(1000–5000 km),and far-field(5000–12000 km) global positioning system(GPS) observations.The results indicate that the near-field ionospheric perturbation that occurred 8–15 min after the cataclysmic eruption was mainly derived from the shock wave(~1000 m/s) generated by the blast,while the low-frequency branch with long-distance propagation characteristics over the regional and the far-field was mainly associated with atmospheric Lamb waves(~330 m/s).Moreover,the amplitude of disturbance and background total electron content(TEC) are related proportionally.The intensity of the volcanic eruption and the background ionospheric conditions determine the magnitude of ionospheric responses.TEC perturbations were invisible on the reference days.Furthermore,the source location and onset time were calculated using the ray tracing technique,which confirms that the Tonga event triggered the ionospheric anomaly beyond the crater.Finally,the change in the frequency of the perturbations coincided with the arrival of the initial tsunami,implying the generation of a meteotsunami. 展开更多
关键词 GPS Tonga volcano Traveling ionospheric disturbances RAYTRACING Meteotsunami
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部