The vast expanse of Mesozoic igneous rocks in Hong Kong contain important geological records of late Mesozoic magmatic events and tectonic processes from the coastal region of Southeast China. Of these,the Ping Chau F...The vast expanse of Mesozoic igneous rocks in Hong Kong contain important geological records of late Mesozoic magmatic events and tectonic processes from the coastal region of Southeast China. Of these,the Ping Chau Formation in the northwestern New Territories is the youngest known stratum. We perform a detailed study of the volcanic rocks of the Ping Chau Formation utilizing zircon U-Pb dating,with major and trace elements geochemistry. LA-ICP-MS zircon U-Pb data reveal Early Cretaceous age from two volcanic rock samples, with zircon crystallization from magmas at 140.3 ± 0.8 Ma and 139.3 ± 0.9 Ma,respectively. These rocks have high contents of total alkalis(Na_2O + K_2O = 5.58-9.45 wt.%), high-field-strength elements and light rare earth elements, conspicuous negative Eu anomalies, and depletions in Nb, Ta, Ti, Sr, Ba and P. Using this data, in combination with previous studies on the late Mesozoic volcanic belt in Southeast China, we propose that the volcanic rocks of the Ping Chau Formation probably originated from deep melting of the crust in a back-arc extensional setting induced by the subduction of the paleo-Pacific Plate. This formation represents the final stages of Early Cretaceous volcanic activity in Hong Kong, as associated with large-scale lithospheric extension, thinning and magmatism. Our results provide new information that can be used in evaluating the significance of Early Cretaceous volcanism and tectonics in Southeast China.展开更多
Lithological,geochronological,granulometric,and scanning electron microscope(SEM)analyses of eight lacustrine outcrops indicate the existence of a large palaeolake in Dali Nor area during 149-24.6 ka(MIS5-3)and a smal...Lithological,geochronological,granulometric,and scanning electron microscope(SEM)analyses of eight lacustrine outcrops indicate the existence of a large palaeolake in Dali Nor area during 149-24.6 ka(MIS5-3)and a small one in upstream of the Xilamulun River during 12.96-11.69 ka.The large palaeolake recorded its highest water level above 1300 m during the MIS3 and covered the whole Dali Nor basin and upstream of the Xilamulun River within an area of about 3000 km^2.However,the small palaeolake with a highest water level above 1200 m,covered an area of about 600 km^2.Besides the reconstruction of palaeolake areas,this study also looked into the evolutionary process of the palaeolake during the Late Pleistocene.Our data provide insights on the timing of appearance of the large palaeolakes and a better understanding of the mechanism responsible for variations in the environment conditions of dry lands in middle latitudes.展开更多
Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data ...Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data of the rhyolitic tuff to constrain the diagenesis age and petrogenesis of the rocks, tectonic setting and early Cretaceous volcanism of Hong Kong. The first geochronological data show that the zircons in the volcanic rocks have U-Pb age of 141.1-139.5 Ma, which reveals that the rhyolitic tuff on Port Island was formed in the early Cretaceous (K1). Geochemically, these acid rocks, which are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), belong to the high K calc-alkaline to shoshonite series with strongly-peraluminous characteristic. The geochemical analyses suggest that the volcanic rocks were derived from deep melting in the continental crust caused by basaltic magma underplating. Based on the geochemical analysis and previous studies, we concluded that the rhyolitic tufts on Port Island were formed in a back- arc extension setting in response to the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate.展开更多
基金funded by the Hong Kong Agriculture, Fisheries and Conservation Department Investigation Program (Grant No. AFCD/SQ/92/14)
文摘The vast expanse of Mesozoic igneous rocks in Hong Kong contain important geological records of late Mesozoic magmatic events and tectonic processes from the coastal region of Southeast China. Of these,the Ping Chau Formation in the northwestern New Territories is the youngest known stratum. We perform a detailed study of the volcanic rocks of the Ping Chau Formation utilizing zircon U-Pb dating,with major and trace elements geochemistry. LA-ICP-MS zircon U-Pb data reveal Early Cretaceous age from two volcanic rock samples, with zircon crystallization from magmas at 140.3 ± 0.8 Ma and 139.3 ± 0.9 Ma,respectively. These rocks have high contents of total alkalis(Na_2O + K_2O = 5.58-9.45 wt.%), high-field-strength elements and light rare earth elements, conspicuous negative Eu anomalies, and depletions in Nb, Ta, Ti, Sr, Ba and P. Using this data, in combination with previous studies on the late Mesozoic volcanic belt in Southeast China, we propose that the volcanic rocks of the Ping Chau Formation probably originated from deep melting of the crust in a back-arc extensional setting induced by the subduction of the paleo-Pacific Plate. This formation represents the final stages of Early Cretaceous volcanic activity in Hong Kong, as associated with large-scale lithospheric extension, thinning and magmatism. Our results provide new information that can be used in evaluating the significance of Early Cretaceous volcanism and tectonics in Southeast China.
基金supported by the National Natural Science Foundation of China(Grant No.41320003)Special Research of the Ministry of Land and Resources,China(Grant No.20121107703)
文摘Lithological,geochronological,granulometric,and scanning electron microscope(SEM)analyses of eight lacustrine outcrops indicate the existence of a large palaeolake in Dali Nor area during 149-24.6 ka(MIS5-3)and a small one in upstream of the Xilamulun River during 12.96-11.69 ka.The large palaeolake recorded its highest water level above 1300 m during the MIS3 and covered the whole Dali Nor basin and upstream of the Xilamulun River within an area of about 3000 km^2.However,the small palaeolake with a highest water level above 1200 m,covered an area of about 600 km^2.Besides the reconstruction of palaeolake areas,this study also looked into the evolutionary process of the palaeolake during the Late Pleistocene.Our data provide insights on the timing of appearance of the large palaeolakes and a better understanding of the mechanism responsible for variations in the environment conditions of dry lands in middle latitudes.
基金supported by a geological survey program of Agriculture,Fisheries and Conservation Department of Hong Kong Special Administrative Region(Grant No.AFCD/SQ/92/14)
文摘Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data of the rhyolitic tuff to constrain the diagenesis age and petrogenesis of the rocks, tectonic setting and early Cretaceous volcanism of Hong Kong. The first geochronological data show that the zircons in the volcanic rocks have U-Pb age of 141.1-139.5 Ma, which reveals that the rhyolitic tuff on Port Island was formed in the early Cretaceous (K1). Geochemically, these acid rocks, which are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs), belong to the high K calc-alkaline to shoshonite series with strongly-peraluminous characteristic. The geochemical analyses suggest that the volcanic rocks were derived from deep melting in the continental crust caused by basaltic magma underplating. Based on the geochemical analysis and previous studies, we concluded that the rhyolitic tufts on Port Island were formed in a back- arc extension setting in response to the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate.