There are several major pathological changes in Alzheimer's disease, including apoptosis of cho- linergic neurons, overactivity or overexpression of 13-site amyloid precursor protein cleaving enzyme 1 (BACE1) and i...There are several major pathological changes in Alzheimer's disease, including apoptosis of cho- linergic neurons, overactivity or overexpression of 13-site amyloid precursor protein cleaving enzyme 1 (BACE1) and inflammation. In this study, we synthesized a 19-nt oligonucleotide targeting BACE1, the key enzyme in amyloid beta protein (AI3) production, and introduced it into the pSilenCircle vector to construct a short hairpin (shRNA) expression plasmid against the BACE1 gene. We transfected this vector into C17.2 neural stem cells and primary neural stem cells, resulting in downregulation of the BACE1 gene, which in turn induced a considerable reduction in reducing AI3 protein production. We anticipate that this technique combining cell transplantation and gene ther- apy will open up novel therapeutic avenues for Alzheimer's disease, particularly because it can be used to simultaneously target several pathogenetic changes in the disease.展开更多
In recent years,the scale of greenhouse grows rapidly and steadily in China,which promotes the development of greenhouse technology and the demand for standardized technology.However,the standardization process of gre...In recent years,the scale of greenhouse grows rapidly and steadily in China,which promotes the development of greenhouse technology and the demand for standardized technology.However,the standardization process of greenhouse industry in China has been facing with the problem of unbalanced development with the practical standard system for many years.To solve these problems,the most characteristic greenhouse designs used in China contributing to this work are presented in detail.And the development of standard system and the standardization efforts of them are summarized and analyzed in relationship to the data presented in this paper.In this way the origin of greenhouse standard system in China and context of the system development and standardization of greenhouse structure are clarified.It was also found that the development and iterative update of greenhouse standard system are under the influences of enterprises which as the participation of standard constitutors were proved to play an important role in promoting the standardization development of greenhouse.The outcome of this work may be utilized to perfect the greenhouse standardization system and improve the greenhouse standardization efficiency that dominate the facility agriculture in China.展开更多
At present,the attitude control method of plant protection UAV is the classical PID control,but there are some imperfections in the PID control,such as the contradiction between speediness and overshoot,the weak anti-...At present,the attitude control method of plant protection UAV is the classical PID control,but there are some imperfections in the PID control,such as the contradiction between speediness and overshoot,the weak anti-jamming ability and adaptability.The physical parameters of plant protection UAV are time-varying,and the airflow also interferes with it.The control ability of classical PID is limited,and its control parameters are fixed,and its anti-jamming ability and adaptability are not strong.Therefore,a fuzzy adaptive PID controller is proposed in this paper.Fuzzy logic control is used to optimize the control parameters of PID in order to improve the dynamic and static performance and adaptability of attitude control of plant protection UAV.In the process of research,the mathematical model of UAV is established firstly,then the fuzzy adaptive PID is designed,and then the simulation is carried out in Simulink.The simulation results show that the fuzzy adaptive PID controller has better dynamic and static control performance and adaptability than the traditional PID controller.Therefore,the proposed control method has excellent application value in the attitude of plant protection UAV.展开更多
Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferomet...Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferometer (MZI) coupler to change the resonator from under-coupling to over-coupling, the device can realize a π phase shift on the incoming microwave signal with a frequency up to 25 GHz. The device can also realize 2.5π continuous phase tuning by manipulating the three DC bias voltages applied on the MZI coupler.展开更多
Agricultural robots are flexible to obtain ambient information across large areas of farmland. However, it needs to face two major challenges: data compression and filtering noise. To address these challenges, an enco...Agricultural robots are flexible to obtain ambient information across large areas of farmland. However, it needs to face two major challenges: data compression and filtering noise. To address these challenges, an encoder for ambient data compression, named Tiny-Encoder, was presented to compress and filter raw ambient information, which can be applied to agricultural robots. Tiny-Encoder is based on the operation of convolutions and pooling, and it has a small number of layers and filters. With the aim of evaluating the performance of Tiny-Encoder, different three types of ambient information (including temperature, humidity, and light) were selected to show the performance of compressing raw data and filtering noise. In the task of compressing raw data, Tiny-Encoder obtained higher accuracy (less than the maximum error of sensors ±0.5°C or ±3.5% RH) and more appropriate size (the largest size is 205 KB) than the other two auto-encoders based convolutional operations with different compressed features (including 20, 60, and 200 features). As for filtering noise, Tiny-Encoder has comparable performance with three conventional filtering approaches (including median filtering, Gaussian filtering, and Savitzky-Golay filtering). With large kernel size (i.e., 5), Tiny-Encoder has the best performance among these four filtering approaches: the coefficients of variation with the large kernel (i.e., 5) were 8.6189% (temperature), 10.2684% (humidity), 57.3576% (light), respectively. Overall, Tiny-Encoder can be used for ambient information compression applied to microcontrollers in agricultural information acquisition robots.展开更多
基金supported by grants from the National Natural Science Foundation of China,No.81271476the Natural Science Foundation of Guangdong Province,No.S2011010004366
文摘There are several major pathological changes in Alzheimer's disease, including apoptosis of cho- linergic neurons, overactivity or overexpression of 13-site amyloid precursor protein cleaving enzyme 1 (BACE1) and inflammation. In this study, we synthesized a 19-nt oligonucleotide targeting BACE1, the key enzyme in amyloid beta protein (AI3) production, and introduced it into the pSilenCircle vector to construct a short hairpin (shRNA) expression plasmid against the BACE1 gene. We transfected this vector into C17.2 neural stem cells and primary neural stem cells, resulting in downregulation of the BACE1 gene, which in turn induced a considerable reduction in reducing AI3 protein production. We anticipate that this technique combining cell transplantation and gene ther- apy will open up novel therapeutic avenues for Alzheimer's disease, particularly because it can be used to simultaneously target several pathogenetic changes in the disease.
基金This work was supported by National Key Technology R&D Program of China during the 12th Five-Year Plan Period(Grant No.2012BAD35B02).
文摘In recent years,the scale of greenhouse grows rapidly and steadily in China,which promotes the development of greenhouse technology and the demand for standardized technology.However,the standardization process of greenhouse industry in China has been facing with the problem of unbalanced development with the practical standard system for many years.To solve these problems,the most characteristic greenhouse designs used in China contributing to this work are presented in detail.And the development of standard system and the standardization efforts of them are summarized and analyzed in relationship to the data presented in this paper.In this way the origin of greenhouse standard system in China and context of the system development and standardization of greenhouse structure are clarified.It was also found that the development and iterative update of greenhouse standard system are under the influences of enterprises which as the participation of standard constitutors were proved to play an important role in promoting the standardization development of greenhouse.The outcome of this work may be utilized to perfect the greenhouse standardization system and improve the greenhouse standardization efficiency that dominate the facility agriculture in China.
基金This research work was supported by Project of Scientific Operating Expenses from Ministry of Education of China(2017PT19)National Natural Science Foundation of China(31761133019).
文摘At present,the attitude control method of plant protection UAV is the classical PID control,but there are some imperfections in the PID control,such as the contradiction between speediness and overshoot,the weak anti-jamming ability and adaptability.The physical parameters of plant protection UAV are time-varying,and the airflow also interferes with it.The control ability of classical PID is limited,and its control parameters are fixed,and its anti-jamming ability and adaptability are not strong.Therefore,a fuzzy adaptive PID controller is proposed in this paper.Fuzzy logic control is used to optimize the control parameters of PID in order to improve the dynamic and static performance and adaptability of attitude control of plant protection UAV.In the process of research,the mathematical model of UAV is established firstly,then the fuzzy adaptive PID is designed,and then the simulation is carried out in Simulink.The simulation results show that the fuzzy adaptive PID controller has better dynamic and static control performance and adaptability than the traditional PID controller.Therefore,the proposed control method has excellent application value in the attitude of plant protection UAV.
基金Acknowledgements This work was supported in part by the National High Technology Research and Development Program (863 Program) (No. 2013AA014402), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61422508), the Shanghai Rising-Star Program (No. 14QA 1402600), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of Ministry of Education of China (No. 20130073130005). We also acknowledge IME Singapore for device fabrication.
文摘Phase shifter is one of the key devices in microwave photonics. We report a silicon microring resonator with coupling modulation to realize microwave phase shift. With coupling tuning of the Mach-Zehnder interferometer (MZI) coupler to change the resonator from under-coupling to over-coupling, the device can realize a π phase shift on the incoming microwave signal with a frequency up to 25 GHz. The device can also realize 2.5π continuous phase tuning by manipulating the three DC bias voltages applied on the MZI coupler.
基金This work was financially supported by the National Key Research and Development Program(Grant No.2019YFE0125500)the Chinese University Scientific Fund(Grant No.2021TC111).
文摘Agricultural robots are flexible to obtain ambient information across large areas of farmland. However, it needs to face two major challenges: data compression and filtering noise. To address these challenges, an encoder for ambient data compression, named Tiny-Encoder, was presented to compress and filter raw ambient information, which can be applied to agricultural robots. Tiny-Encoder is based on the operation of convolutions and pooling, and it has a small number of layers and filters. With the aim of evaluating the performance of Tiny-Encoder, different three types of ambient information (including temperature, humidity, and light) were selected to show the performance of compressing raw data and filtering noise. In the task of compressing raw data, Tiny-Encoder obtained higher accuracy (less than the maximum error of sensors ±0.5°C or ±3.5% RH) and more appropriate size (the largest size is 205 KB) than the other two auto-encoders based convolutional operations with different compressed features (including 20, 60, and 200 features). As for filtering noise, Tiny-Encoder has comparable performance with three conventional filtering approaches (including median filtering, Gaussian filtering, and Savitzky-Golay filtering). With large kernel size (i.e., 5), Tiny-Encoder has the best performance among these four filtering approaches: the coefficients of variation with the large kernel (i.e., 5) were 8.6189% (temperature), 10.2684% (humidity), 57.3576% (light), respectively. Overall, Tiny-Encoder can be used for ambient information compression applied to microcontrollers in agricultural information acquisition robots.