The northern Tibetan Plateau is a climatically sensitive zone influenced by monsoon and westerly winds.In summer,water vapor transport can reach Qinghai Lake and the eastern section of the Qilian Mountains;in winter,w...The northern Tibetan Plateau is a climatically sensitive zone influenced by monsoon and westerly winds.In summer,water vapor transport can reach Qinghai Lake and the eastern section of the Qilian Mountains;in winter,westerly winds mainly control the climate.This article compares the wet/dry changes in the region during the mid-Holocene(MH)warm period,the medieval climate anomaly(MCA),the current warm period(CWP),and the future warm period from the perspective of paleoclimate.We found that the MH warm period was mainly affected by the orbit-controlled East Asian summer monsoon,and the region showed warm and humid climate characteristics.The MCA was mainly controlled by solar radiation,and there was a warm and dry phenomenon.The CWP and the future warm period are mainly controlled by the rise in temperature caused by the increase in greenhouse gases,and the climate is becoming more arid.The wet/dry patterns in the CWP and the future warm period in the next century on the northern Tibetan Plateau are similar to those in the MCA.Continued warming will lead to the expansion of the westerly belt and a gradually humid climate.The future wet/dry changes will be more similar to the MH warm period.展开更多
Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new t...Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new type of pipeline construction method,enables non-excavation construction and can address the shortcomings of traditional pipeline construction.This article analyzes the concept and application advantages of pipe jacking technology.Combining engineering examples,it explores the application strategies of pipe jacking technology in the construction process of municipal rainwater pipelines for reference.展开更多
Dengue virus(DENV) and Zika virus(ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there...Dengue virus(DENV) and Zika virus(ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there are few effective vaccines and therapies available against these viruses. Therefore, the discovery of new antiviral agents is critical.Herein, a scorpion venom peptide(Smp76) characterized from Scorpio maurus palmatus was successfully expressed and purified in Escherichia coli BL21(DE3). The recombinant Smp76(rSmp76) was found to effectively inhibit DENV and ZIKV infections in a dose-dependent manner in both cultured cell lines and primary mouse macrophages. Interestingly,rSmp76 did not inactivate the viral particles directly but suppressed the established viral infection, similar to the effect of interferon(IFN)-b. Mechanistically, rSmp76 was revealed to upregulate the expression of IFN-b by activating interferon regulatory transcription factor 3(IRF3) phosphorylation, enhancing the type-Ⅰ IFN response and inhibiting viral infection.This mechanism is significantly different from traditional virucidal antimicrobial peptides(AMPs). Overall, the scorpion venom peptide Smp76 is a potential new antiviral agent with a unique mechanism involving type-Ⅰ IFN responses,demonstrating that natural AMPs can enhance immunity by functioning as immunomodulators.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0202)the National Natural Science Foundation of China(Grant Nos.42371159,42077415)the Program of Introducing Talents of Discipline to University(Grant No.BP0618001)。
文摘The northern Tibetan Plateau is a climatically sensitive zone influenced by monsoon and westerly winds.In summer,water vapor transport can reach Qinghai Lake and the eastern section of the Qilian Mountains;in winter,westerly winds mainly control the climate.This article compares the wet/dry changes in the region during the mid-Holocene(MH)warm period,the medieval climate anomaly(MCA),the current warm period(CWP),and the future warm period from the perspective of paleoclimate.We found that the MH warm period was mainly affected by the orbit-controlled East Asian summer monsoon,and the region showed warm and humid climate characteristics.The MCA was mainly controlled by solar radiation,and there was a warm and dry phenomenon.The CWP and the future warm period are mainly controlled by the rise in temperature caused by the increase in greenhouse gases,and the climate is becoming more arid.The wet/dry patterns in the CWP and the future warm period in the next century on the northern Tibetan Plateau are similar to those in the MCA.Continued warming will lead to the expansion of the westerly belt and a gradually humid climate.The future wet/dry changes will be more similar to the MH warm period.
文摘Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new type of pipeline construction method,enables non-excavation construction and can address the shortcomings of traditional pipeline construction.This article analyzes the concept and application advantages of pipe jacking technology.Combining engineering examples,it explores the application strategies of pipe jacking technology in the construction process of municipal rainwater pipelines for reference.
基金supported by grants from National Science Fund of China (Nos. 31572289, 31872239 and 81630091)International S&T Cooperation Program of China (No. S2016G3110)+3 种基金Hubei Science Fund (Nos. 2015CFA042 and 2016CFA018)China-Kazakhstan Cooperation Program (No. CK-07-09)Fundamental Research Funds for the Central Universities in China (Nos. 2042017kf0242 and 2042017kf0199)financial support from Higher Education Commission (HEC) of Pakistan
文摘Dengue virus(DENV) and Zika virus(ZIKV) have spread throughout many countries in the developing world and infect millions of people every year, causing severe harm to human health and the economy. Unfortunately, there are few effective vaccines and therapies available against these viruses. Therefore, the discovery of new antiviral agents is critical.Herein, a scorpion venom peptide(Smp76) characterized from Scorpio maurus palmatus was successfully expressed and purified in Escherichia coli BL21(DE3). The recombinant Smp76(rSmp76) was found to effectively inhibit DENV and ZIKV infections in a dose-dependent manner in both cultured cell lines and primary mouse macrophages. Interestingly,rSmp76 did not inactivate the viral particles directly but suppressed the established viral infection, similar to the effect of interferon(IFN)-b. Mechanistically, rSmp76 was revealed to upregulate the expression of IFN-b by activating interferon regulatory transcription factor 3(IRF3) phosphorylation, enhancing the type-Ⅰ IFN response and inhibiting viral infection.This mechanism is significantly different from traditional virucidal antimicrobial peptides(AMPs). Overall, the scorpion venom peptide Smp76 is a potential new antiviral agent with a unique mechanism involving type-Ⅰ IFN responses,demonstrating that natural AMPs can enhance immunity by functioning as immunomodulators.