By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationshi...By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationship with the North Pacific sea surface temperature(SST).Two significant interdecadal signals,one with an 11-year cycle and the other with a 23-year cycle,are identified in both the precipitation and SST fields.Results show that the North Pacific SST forcing modulates the precipitation distribution over China through the effects of the Pacific Decadal Oscillation(PDO)-related anomalous Aleutian low on the western Pacific subtropical high(WPSH)and Mongolia high(MH).During the development stage of the PDO cold phase associated with the 11-year cycle,a weakened WPSH and MH increased the precipitation over the Yangtze River Basin,whereas an intensified WPSH and MH caused the enhanced rain band to move northward to North China during the decay stage.During the development stage of the PDO cold phase associated with the 23-year cycle,a weakened WPSH and MH increased the precipitation over North China,whereas an intensified WPSH and the weakened MH increased the precipitation over South China during the decay stage.The 11-year and 23-year variabilities contribute differently to the precipitation variations in the different regions of China,as seen in the 1998flooding case.The 11-year cycle mainly accounts for precipitation increases over the Yangtze River Basin,while the 23-year cycle is responsible for the precipitation increase over Northeast China.These results have important implications for understanding how the PDO modulates the precipitation distribution over China,helping to improve interdecadal climate prediction.展开更多
The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the e...The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the evolution of the El Niño-Southern Oscillation(ENSO).The possible linkage between the EZW over the western Pacific and the offequatorial monsoonal winds associated with the WNPSM and its decadal changes have not yet been fully understood.Here,we find a non-stationary relationship between the WNPSM and the western Pacific EZW,significantly strengthening their correlation around the late 1980s/early 1990s.This observed shift in the WNPSM–EZW relationship could be explained by the changes in the related sea surface temperature(SST)configurations across the tropical oceans.The enhanced influence from the springtime tropical North Atlantic,summertime tropical central Pacific,and maritime continent SST anomalies may be working together in contributing to the recent intensified WNPSM–EZW co-variability.The observed recent strengthening of the WNPSM–EZW relationship may profoundly impact the climate system,including prompting more effective feedback from the WNPSM on subsequent ENSO evolution and bolstering a stronger biennial tendency of the WNPSM–ENSO coupled system.The results obtained herein imply that the WNPSM,EZW,ENSO,and the tropical North Atlantic SST may be closely linked within a unified climate system with a quasi-biennial rhythm occurring during recent decades,accompanied by a reinforcement of the WNPSM–ENSO interplay quite possibly triggered by enhanced tropical Pacific–Atlantic cross-basin interactions.These results highlight the importance of the tropical Atlantic cross-basin influences in shaping the spatial structure of WNPSM-related wind anomalies and the WNPSM–ENSO interaction.展开更多
Despite significant improvements in five-year survival rates due to early diagnosis and combination therapy, triple-negative breast cancer (TNBC) treatment remains a major challenge. Finding new and effective targets ...Despite significant improvements in five-year survival rates due to early diagnosis and combination therapy, triple-negative breast cancer (TNBC) treatment remains a major challenge. Finding new and effective targets for diagnosis and drug therapy is urgent for TNBC patients. Jagged-1 (JAG1), one of the canonical ligands of the Notch signaling pathway, is involved in vascular budding and is a poor prognostic factor of TNBC. In this study, combined with quantitative real-time PCR, database analysis, animal experiments, and other means, JAG1 was confirmed to be related to the poor prognosis of TNBC patients. JAG1 was highly expressed in MDA-MB-231 Bone (231B) cells, with stronger invasion and metastasis ability than MDA-MB-231 (231) cells. Treatment of human vascular endothelial cells (HUVEC) with TNBC conditioned medium showed that TNBC JAG1 promoted the angiogenesis of HUVEC. Next, we detected the exosomes extracted from TNBC conditioned medium and found that JAG1 promoted the exosome secretion from 231 cells via ALIX-RAB11A/RAB35. In addition, we also found that the exosomes from JAG1 overexpressed TNBC cells contained more long non-coding RNA (lncRNA) MALAT1 , and MALAT1 promoted angiogenesis of HUVEC by targeting miR-140-5p . Finally, the angiogenesis-promoting effect of JAG1 in TNBC was further investigated by matrix gel assay. In conclusion, we reveal that JAG1 has a pro-invasion effect on TNBC and is involved in microenvironment angiogenesis by promoting exosome secretion and the MALAT1-miR-140-5p-JAG1/VEGFA pathway.展开更多
This paper focused on the pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons (PAHs) in a new urban district of Nanjing, China. Gaseous and aerosol PM2.5 (particu...This paper focused on the pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons (PAHs) in a new urban district of Nanjing, China. Gaseous and aerosol PM2.5 (particulate matter with aerodynamic diameter smaller than 2.S μm) samples were collected in spring of 2015. Sixteen PAHs were extracted and analyzed after sampling. Firstly, arithmetic mean concentrations of PAHs and BaPeq (benzo[a]pyrene equivalent) were calculated. The mean concentrations of PAHs were 29.26 ± 14.13,18.14 ± 5.37 and 48.47 ± 16.03 ng/m3 in gas phase, particle phase and both phases, respectively. The mean concentrations of BaPeq were 0.87 ± 0.51, 2.71 ± 2.17 and 4.06 ± 2.31 ng/m3 in gas phase, particle phase and both phases, respectively. Secondly, diagnostic ratios and principal component analysis were adopted to identify the sources of PAHs and the outcomes were the same: traffic exhaust was the predominant source followed by fuel combustion and industrial process. Finally, incremental lung cancer risk (ILCR) induced by whole year inhalation exposure to PAHs for population groups of different age and gender were estimated based on a Monte Carlo simulation. ILCR values caused by particle phase PAHs were greater than those caused by gas phase PAHs. ILCR values for adults were greater than those for other age groups. ILCR values caused by total (gas + particle) PAHs for diverse groups were all greater than the significant level (10-6), indicating high potential lung cancer risk. Sensitivity analysis results showed that cancer slope factor for BaP inhalation exposure and BaPeq concentration had greater impact than body weight and inhalation rate on the ILCR.展开更多
The intensity of the interannual variability(IIV)of the mean tropical cyclone(TC)genesis latitude over the western North Pacific(WNP)has been weakening significantly since the late 1990 s.It is found that the IIV of t...The intensity of the interannual variability(IIV)of the mean tropical cyclone(TC)genesis latitude over the western North Pacific(WNP)has been weakening significantly since the late 1990 s.It is found that the IIV of the mean TC genesis latitude depends largely on the strength of the out-of-phase relationship between TC genesis numbers in the north(north of 15°N)and south(south of 15°N)of the WNP.A weaker(stronger)north–south TC see-saw has led to a smaller(larger)IIV of the mean TC genesis latitude after(before)the late 1990 s.Different configurations of sea surface temperature(SST)anomalies are found to be responsible for the decadal changes in the north–south TC see-saw and dipole structure.Before the late 1990 s,the joint effect of SST anomalies over the tropical Pacific and tropical North Indian Ocean dominated,rendering the obvious north–south TC see-saw and larger IIV of the mean TC genesis latitude.After the late 1990 s,however,the dominant SST anomalies associated with TC genesis shift to the tropical central Pacific(CP)and tropical North Atlantic Ocean,which have weakened the north–south TC seesaw and reduced the IIV of the mean TC genesis latitude.These observed decadal changes in the configuration of SST anomalies are considered to be closely associated with the shift of the El Ni?o–Southern Oscillation(ENSO)from eastern Pacific(EP)type to the CP type during the recent decades.The results suggest that the increased influences from the tropical Atlantic Ocean have become more important to the variations of TC activity in the WNP during the recent decades.These results may have important implications for assessing the latitudinal distributions of TC-induced hazards.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42030410)Laoshan Laboratory(No.LSKJ202202403-2)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST。
文摘By using the multi-taper method(MTM)of singular value decomposition(SVD),this study investigates the interdecadal evolution(10-to 30-year cycle)of precipitation over eastern China from 1951 to 2015 and its relationship with the North Pacific sea surface temperature(SST).Two significant interdecadal signals,one with an 11-year cycle and the other with a 23-year cycle,are identified in both the precipitation and SST fields.Results show that the North Pacific SST forcing modulates the precipitation distribution over China through the effects of the Pacific Decadal Oscillation(PDO)-related anomalous Aleutian low on the western Pacific subtropical high(WPSH)and Mongolia high(MH).During the development stage of the PDO cold phase associated with the 11-year cycle,a weakened WPSH and MH increased the precipitation over the Yangtze River Basin,whereas an intensified WPSH and MH caused the enhanced rain band to move northward to North China during the decay stage.During the development stage of the PDO cold phase associated with the 23-year cycle,a weakened WPSH and MH increased the precipitation over North China,whereas an intensified WPSH and the weakened MH increased the precipitation over South China during the decay stage.The 11-year and 23-year variabilities contribute differently to the precipitation variations in the different regions of China,as seen in the 1998flooding case.The 11-year cycle mainly accounts for precipitation increases over the Yangtze River Basin,while the 23-year cycle is responsible for the precipitation increase over Northeast China.These results have important implications for understanding how the PDO modulates the precipitation distribution over China,helping to improve interdecadal climate prediction.
基金This work was supported by the National Natural Science Foundation of China(Grant No:41776031)the National Key Research and Development Program of China(Grant 2018YFC1506903)+1 种基金the team project funding of scientific research innovation for universities in Guangdong province(Grant 2019KCXTF021)the program for scientific research start-up funds of Guangdong Ocean University(Grant R17051).
文摘The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the evolution of the El Niño-Southern Oscillation(ENSO).The possible linkage between the EZW over the western Pacific and the offequatorial monsoonal winds associated with the WNPSM and its decadal changes have not yet been fully understood.Here,we find a non-stationary relationship between the WNPSM and the western Pacific EZW,significantly strengthening their correlation around the late 1980s/early 1990s.This observed shift in the WNPSM–EZW relationship could be explained by the changes in the related sea surface temperature(SST)configurations across the tropical oceans.The enhanced influence from the springtime tropical North Atlantic,summertime tropical central Pacific,and maritime continent SST anomalies may be working together in contributing to the recent intensified WNPSM–EZW co-variability.The observed recent strengthening of the WNPSM–EZW relationship may profoundly impact the climate system,including prompting more effective feedback from the WNPSM on subsequent ENSO evolution and bolstering a stronger biennial tendency of the WNPSM–ENSO coupled system.The results obtained herein imply that the WNPSM,EZW,ENSO,and the tropical North Atlantic SST may be closely linked within a unified climate system with a quasi-biennial rhythm occurring during recent decades,accompanied by a reinforcement of the WNPSM–ENSO interplay quite possibly triggered by enhanced tropical Pacific–Atlantic cross-basin interactions.These results highlight the importance of the tropical Atlantic cross-basin influences in shaping the spatial structure of WNPSM-related wind anomalies and the WNPSM–ENSO interaction.
文摘Despite significant improvements in five-year survival rates due to early diagnosis and combination therapy, triple-negative breast cancer (TNBC) treatment remains a major challenge. Finding new and effective targets for diagnosis and drug therapy is urgent for TNBC patients. Jagged-1 (JAG1), one of the canonical ligands of the Notch signaling pathway, is involved in vascular budding and is a poor prognostic factor of TNBC. In this study, combined with quantitative real-time PCR, database analysis, animal experiments, and other means, JAG1 was confirmed to be related to the poor prognosis of TNBC patients. JAG1 was highly expressed in MDA-MB-231 Bone (231B) cells, with stronger invasion and metastasis ability than MDA-MB-231 (231) cells. Treatment of human vascular endothelial cells (HUVEC) with TNBC conditioned medium showed that TNBC JAG1 promoted the angiogenesis of HUVEC. Next, we detected the exosomes extracted from TNBC conditioned medium and found that JAG1 promoted the exosome secretion from 231 cells via ALIX-RAB11A/RAB35. In addition, we also found that the exosomes from JAG1 overexpressed TNBC cells contained more long non-coding RNA (lncRNA) MALAT1 , and MALAT1 promoted angiogenesis of HUVEC by targeting miR-140-5p . Finally, the angiogenesis-promoting effect of JAG1 in TNBC was further investigated by matrix gel assay. In conclusion, we reveal that JAG1 has a pro-invasion effect on TNBC and is involved in microenvironment angiogenesis by promoting exosome secretion and the MALAT1-miR-140-5p-JAG1/VEGFA pathway.
基金supported by the National Natural Science Foundation of China(No.41001344)the China Postdoctoral Science Foundation Funded Project(2013M541696)+5 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1301040C)the Program of Natural Science Research of Jiangsu Higher Education Institutions of China(No.13KJB610008)the Program of State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences(No.SKLECRA2013OFP07)the Scientific Research Foundation of the High-level Personnel of Nanjing Normal University(No.2012105XGQ0102)the Program of Graduate Education Reform and Practice of Nanjing Normal University(No.1812000002A521)the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H116)
文摘This paper focused on the pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons (PAHs) in a new urban district of Nanjing, China. Gaseous and aerosol PM2.5 (particulate matter with aerodynamic diameter smaller than 2.S μm) samples were collected in spring of 2015. Sixteen PAHs were extracted and analyzed after sampling. Firstly, arithmetic mean concentrations of PAHs and BaPeq (benzo[a]pyrene equivalent) were calculated. The mean concentrations of PAHs were 29.26 ± 14.13,18.14 ± 5.37 and 48.47 ± 16.03 ng/m3 in gas phase, particle phase and both phases, respectively. The mean concentrations of BaPeq were 0.87 ± 0.51, 2.71 ± 2.17 and 4.06 ± 2.31 ng/m3 in gas phase, particle phase and both phases, respectively. Secondly, diagnostic ratios and principal component analysis were adopted to identify the sources of PAHs and the outcomes were the same: traffic exhaust was the predominant source followed by fuel combustion and industrial process. Finally, incremental lung cancer risk (ILCR) induced by whole year inhalation exposure to PAHs for population groups of different age and gender were estimated based on a Monte Carlo simulation. ILCR values caused by particle phase PAHs were greater than those caused by gas phase PAHs. ILCR values for adults were greater than those for other age groups. ILCR values caused by total (gas + particle) PAHs for diverse groups were all greater than the significant level (10-6), indicating high potential lung cancer risk. Sensitivity analysis results showed that cancer slope factor for BaP inhalation exposure and BaPeq concentration had greater impact than body weight and inhalation rate on the ILCR.
基金the National Natural Science Foundation of China(41776031)National Key Research and Development Program of China(2018YFC1506903)+2 种基金Guangdong Natural Science Foundation(2015A030313796)Program for Scientific Research Start-Up Funds of Guangdong Ocean UniversityFoundation for Returned Scholars of the Ministry of Education of China。
文摘The intensity of the interannual variability(IIV)of the mean tropical cyclone(TC)genesis latitude over the western North Pacific(WNP)has been weakening significantly since the late 1990 s.It is found that the IIV of the mean TC genesis latitude depends largely on the strength of the out-of-phase relationship between TC genesis numbers in the north(north of 15°N)and south(south of 15°N)of the WNP.A weaker(stronger)north–south TC see-saw has led to a smaller(larger)IIV of the mean TC genesis latitude after(before)the late 1990 s.Different configurations of sea surface temperature(SST)anomalies are found to be responsible for the decadal changes in the north–south TC see-saw and dipole structure.Before the late 1990 s,the joint effect of SST anomalies over the tropical Pacific and tropical North Indian Ocean dominated,rendering the obvious north–south TC see-saw and larger IIV of the mean TC genesis latitude.After the late 1990 s,however,the dominant SST anomalies associated with TC genesis shift to the tropical central Pacific(CP)and tropical North Atlantic Ocean,which have weakened the north–south TC seesaw and reduced the IIV of the mean TC genesis latitude.These observed decadal changes in the configuration of SST anomalies are considered to be closely associated with the shift of the El Ni?o–Southern Oscillation(ENSO)from eastern Pacific(EP)type to the CP type during the recent decades.The results suggest that the increased influences from the tropical Atlantic Ocean have become more important to the variations of TC activity in the WNP during the recent decades.These results may have important implications for assessing the latitudinal distributions of TC-induced hazards.