Dy^3+-doped glass-ceramics containing NaCaPO4 crystals were successfully fabricated by heat treatment at base glass,and the luminescence properties were investigated for potential applications in radiation measurement...Dy^3+-doped glass-ceramics containing NaCaPO4 crystals were successfully fabricated by heat treatment at base glass,and the luminescence properties were investigated for potential applications in radiation measurements.The photo luminescence(PL)excitation and emission spectra exhibit transitions related to Dy^3+ions corresponding to the strongest excitation and emission wavelengths at 351 and 575 nm,respectively.The CW-OSL properties as a function of dopant concentration,pre-heating temperature,pre-heating time and signal fading were investigated.The most appropriate Dy^3+ion concentration was found to be 0.25 mol%.The TL glow curves have a broad peak feature peaking at 195±5℃.The fading of the OSL signal would keep stable in five days with the intensity value of about 76.11%.The samples also exhibit good signal reusability and a broad linear dose response range(0.02-1000 Gy).展开更多
基金Project supported by the National Natural Science Foundation of China(11675260)。
文摘Dy^3+-doped glass-ceramics containing NaCaPO4 crystals were successfully fabricated by heat treatment at base glass,and the luminescence properties were investigated for potential applications in radiation measurements.The photo luminescence(PL)excitation and emission spectra exhibit transitions related to Dy^3+ions corresponding to the strongest excitation and emission wavelengths at 351 and 575 nm,respectively.The CW-OSL properties as a function of dopant concentration,pre-heating temperature,pre-heating time and signal fading were investigated.The most appropriate Dy^3+ion concentration was found to be 0.25 mol%.The TL glow curves have a broad peak feature peaking at 195±5℃.The fading of the OSL signal would keep stable in five days with the intensity value of about 76.11%.The samples also exhibit good signal reusability and a broad linear dose response range(0.02-1000 Gy).