期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries 被引量:1
1
作者 Gwonsik Nam Jaeseong Hwang +4 位作者 Donghun Kang Sieon Oh Sujong Chae Moonsu Yoon minseong ko 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期562-568,共7页
The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested... The intergranular microcracking in polycrystalline Ni-rich cathode particle is led by anisotropic volume change and stress corrosion along grain boundary,accelerating battery performance decay.Herein,we have suggested a simple but advanced solid-state method that ensures both uniform transition metal distribution and single-crystalline morphology for Ni-rich cathode synthesis without sophisticated coprecipitation.Pelletization-assisted mechanical densification(PAMD)process on solid-state precursor mixture enables the dynamic mass transfer through the increased solid-solid contact area which facilitates the grain growth during sintering process,readily forming micro-sized single-crystalline particle.Furthermore,the improved chemical reactivity by a combination of capillary effect and vacancyassisted diffusion provides homogeneous element distribution within each primary particle.As a result,single-crystalline Ni-rich cathode with PAMD process has eliminated a potential evolution of intergranular cracking,thus achieving superior energy retention capability of 85%over 150 cycles compared to polycrystalline Ni-rich particle even after high-pressure calendering process(corresponding to electrode density of~3.6 g cm^(-3))and high cut-off voltage cycling.This work provides a concrete perspective on developing facile synthetic route of micron-sized single-crystalline Ni-rich cathode materials for high energy density lithium-ion batteries(LIBs). 展开更多
关键词 Lithium-ion batteries Ni-rich cathode materials Mechanical densification Solid-state synthesis
下载PDF
Comparison of commercial silicon-based anode materials for the design of a high-energy lithium-ion battery
2
作者 Minhong Choi Eunhan Lee +2 位作者 Jaekyung Sung Namhyung Kim minseong ko 《Nano Research》 SCIE EI CSCD 2024年第6期5270-5277,共8页
Silicon(Si)is considered a potential alternative anode for next-generation Li-ion batteries owing to its high theoretical capacity and abundance.However,the commercial use of Si anodes is hindered by their large volum... Silicon(Si)is considered a potential alternative anode for next-generation Li-ion batteries owing to its high theoretical capacity and abundance.However,the commercial use of Si anodes is hindered by their large volume expansion(~300%).Numerous efforts have been made to address this issue.Among these efforts,Si-graphite co-utilization has attracted attention as a reasonable alternative for high-energy anodes.A comparative study of representative commercial Si-based materials,such as Si nanoparticles,Si suboxides,and Si−Graphite composites(SiGC),was conducted to characterize their overall performance in high-energy lithium-ion battery(LIB)design by incorporating conventional graphite.Nano-Si was found to exhibit poor electrochemical performance,with severe volume expansion during cycling.Si suboxide provided excellent cycling stability in a full-cell evaluation with stable volume variation after 50 cycles,but had a large irreversible capacity and remarkable volume expansion during the first cycle.SiGC displayed a good initial Coulombic efficiency and the lowest volume change in the first cycle owing to the uniformly distributed nano-Si layer on graphite;however,its long-term cycling stability was relatively poor.To complement each disadvantage of Si suboxide and SiGC,a new combination of these Si-based anodes was suggested and a reasonable improvement in overall battery performance was successfully achieved. 展开更多
关键词 silicon-based anode HIGH-ENERGY COMPARISON lithium ion battery blended electrode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部