期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Benidipine-loaded nanoflower-likemagnesium silicate improves bone regeneration 被引量:1
1
作者 Jingyi Lu Miao Sun +7 位作者 Jingyu Zhang Xiaofu Yang minyi dong Huihui He An Liu Mengfei Yu Baixiang Wang Huiming Wang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第5期507-521,共15页
Regeneration and reconstruction of bone tissue is always a challenge for clinicians due to the uncertainty of bone repair materials in terms of long-term and efficient effects on osteoblasts.Here,we propose a novel st... Regeneration and reconstruction of bone tissue is always a challenge for clinicians due to the uncertainty of bone repair materials in terms of long-term and efficient effects on osteoblasts.Here,we propose a novel strategy combining benidipine,an antihypertensive drug and nanoparticles to synergistically promote the healing of bone defects.Loose and porous benidipine-loaded magnesium silicate nanoparticles were prepared and validated for their biosafety.The nanoparticles were efficiently taken up by preosteoblasts and uniformly distributed around the nucleus.After internalization into cells,the nanosystem is degraded by lysosomes,and the effect of promoting osteogenic differentiation is reflected by the continuous release of benidipine,silicon and magnesium ions.Our results clearly evaluated that the nanoflower-like magnesium silicate delivering benidipine tends to be more appropriate for the bone regeneration in preosteoblasts,indicating that it might be a potential approach in guiding bone repair in clinical applications. 展开更多
关键词 NANOPARTICLES BENIDIPINE Bone tissueengineering ENDOCYTOSIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部