Perovskite-type rare-earth ferrites(REFeO_(3))are promising materials for absorbing electromagnetic(EM)wave pollution.However,insufficient dielectric loss and poor impedance matching are key factors that limit the bro...Perovskite-type rare-earth ferrites(REFeO_(3))are promising materials for absorbing electromagnetic(EM)wave pollution.However,insufficient dielectric loss and poor impedance matching are key factors that limit the broader implementation of REFeO_(3).Herein,a series of multicomponent perovskite-type ferrites with strong EM wave absorption capabilities was prepared.Through the synergistic effect of chemical constitution regulation and entropy regulation,optimization of the dielectric loss and impedance matching is achieved by strengthening the structural defect mechanism,thus further adjusting the EM wave absorption performance.Compared with(LaGdSmNdBa)FeO_(3)(HE-1)and(LaGdPrSmNdBa)FeO_(3)(HE-2),(LaGdBa)FeO_(3)(ME-1)and(LaGdSmBa)FeO_(3)(ME-2)exhibit favorable performance,with optimal minimum reflection loss(RL_(min))of-56.35 dB(at 11.12 GHz)and-63.25 dB(at 7.22 GHz)and effective absorption bandwidth(EAB)of 4.46 and 4.72 GHz,respectively.This multicomponent design provides a new strategy for the development of EM wave absorption materials.展开更多
In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric tra...In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric transparency window(ATW;8–13μm)to advance zero energy consumption radiative cooling technology.To regulate emission and reflection properties,a series of high-entropy rare earth stannate ceramics(HE-RE_(2)Sn_(2)O_(7):(Y_(0.2)La_(0.2)Nd_(0.2)Eu_(0.2)Gd_(0.2))_(2)Sn_(2)O_(7),(Y_(0.2)La_(0.2)Sm_(0.2)Eu_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7),and(Y_(0.2)La_(0.2)Gd_(0.2)Yb_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7))with severe lattice distortion were prepared using a solid phase reaction followed by a pressureless sintering method for the first time.Lattice distortion is accomplished by introducing rare earth elements with different cation radii and mass.The as-synthesized HE-RE_(2)Sn_(2)O_(7)ceramics possess high ATW emissivity(91.38%–95.41%),high NIR solar reflectivity(92.74%–97.62%),low thermal conductivity(1.080–1.619 W·m^(−1)·K^(−1)),and excellent chemical stability.On the one hand,the lattice distortion intensifies the asymmetry of the structural unit to cause a notable alteration in the electric dipole moment,ultimately enlarging the ATW emissivity.On the other hand,by selecting difficult excitation elements,HE-RE_(2)Sn_(2)O_(7),which has a wide band gap(Eg),exhibits high NIR solar reflectivity.Hence,the multi-component design can effectively enhance radiative cooling ability of HE-RE_(2)Sn_(2)O_(7)and provide a novel strategy for developing radiative cooling materials.展开更多
Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)h...Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)high-entropy ceramic(HE-RE2 Hf_(2)O_(7))for control rod was prepared by solid-state reaction method.The ion irradiation of HE-RE_(2) Hf_(2)O_(7)with 400 keV Kr+at 400℃was investigated using a 400 kV ion implanter and compared with single-component pyrochlore Gd2 Hf_(2)O_(7)to evaluate the irradiation resistance.For HE-RE2 Hf_(2)O_(7),the phase transition from pyrochlore to defective fluorite is revealed after irradiation at 60 dpa.After irradiation at 120 dpa,it maintained crystalline,which is comparable to Gd2 Hf_(2)O_(7)but superior to the titanate pyrochlores previously studied.Moreover,the lattice expansion of HE-RE2 Hf_(2)O_(7)(_(0.2)2%)is much lower than that of Gd2 Hf_(2)O_(7)(0.62%),indicating excellent irradiation damage resistance.Nanoindentation tests displayed an irradiation-induced increase in hardness and a decrease in elastic modulus by about 2.6%.Irradiation-induced segregation of elements is observed on the surface of irradiated samples.In addition,HE-RE2 Hf_(2)O_(7)demonstrates a more sluggish grain growth rate than Gd2 Hf_(2)O_(7)at 1200℃,suggesting better high-temperature stability.The linear thermal expansion coefficient of HE-RE2 Hf_(2)O_(7)is 10.7×10-6 K-1 at 298–1273 K.In general,it provides a new strategy for the design of the next advanced nuclear engineering materials.展开更多
Compared with the traditional liquid–liquid extraction method,solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience,free of organic solvents,and fully expos...Compared with the traditional liquid–liquid extraction method,solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience,free of organic solvents,and fully exposed activity.In this study,P_(2)O_(4)(di-2-ethylhexyl phosphoric acid)was chemically modified by using UiO-66 to form the solid-phase extraction agent P_(2)O_(4)-UiO-66-MOFs(di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks)to adsorb In(Ⅲ).The results show that the Zr of UiO-66 bonds with the P-OH of P_(2)O_(4) to form a composite P_(2)O_(4)-UiO-66-MOF,which was confirmed by X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FT-IR).The adsorption process of indium on P_(2)O_(4)-UiO-66-MOFs followed pseudo first-order kinetics,and the adsorption isotherms fit the Langmuir adsorption isotherm model.The adsorption capabilities can reach 192.8 mg/g.After five consecutive cycles of adsorption-desorption-regeneration,the indium adsorption capacity by P_(2)O_(4)-UiO-66-MOFs remained above 99%.The adsorption mechanism analysis showed that the P=O and P-OH of P_(2)O_(4) molecules coated on the surface of P_(2)O_(4)-UiO-66-MOFs participated in the adsorption reaction of indium.In this paper,the extractant P_(2)O_(4) was modified into solid P_(2)O_(4)-UiO-66-MOFs for the first time.This work provides a new idea for the development of solid-phase extractants for the recovery of indium.展开更多
基金Project supported by the National Key Research and Development Program of China(2022YFB3504302)the Young Elite Scientists Sponsorship Program by CAST(YESS20210336)+1 种基金the Fujian Provincial Natural Fund Project(2021J05101)the XIREM Autonomously Deployment Project(2023GG03)。
文摘Perovskite-type rare-earth ferrites(REFeO_(3))are promising materials for absorbing electromagnetic(EM)wave pollution.However,insufficient dielectric loss and poor impedance matching are key factors that limit the broader implementation of REFeO_(3).Herein,a series of multicomponent perovskite-type ferrites with strong EM wave absorption capabilities was prepared.Through the synergistic effect of chemical constitution regulation and entropy regulation,optimization of the dielectric loss and impedance matching is achieved by strengthening the structural defect mechanism,thus further adjusting the EM wave absorption performance.Compared with(LaGdSmNdBa)FeO_(3)(HE-1)and(LaGdPrSmNdBa)FeO_(3)(HE-2),(LaGdBa)FeO_(3)(ME-1)and(LaGdSmBa)FeO_(3)(ME-2)exhibit favorable performance,with optimal minimum reflection loss(RL_(min))of-56.35 dB(at 11.12 GHz)and-63.25 dB(at 7.22 GHz)and effective absorption bandwidth(EAB)of 4.46 and 4.72 GHz,respectively.This multicomponent design provides a new strategy for the development of EM wave absorption materials.
基金the Lingchuang Research Project of China National Nuclear Co.,the National Key R&D Program of China(No.2022YFB3504302)the Fujian Provincial Natural Fund Project(No.2021J05101)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210336)the XMIREM autonomously deployment project(No.2023GG03).
文摘In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric transparency window(ATW;8–13μm)to advance zero energy consumption radiative cooling technology.To regulate emission and reflection properties,a series of high-entropy rare earth stannate ceramics(HE-RE_(2)Sn_(2)O_(7):(Y_(0.2)La_(0.2)Nd_(0.2)Eu_(0.2)Gd_(0.2))_(2)Sn_(2)O_(7),(Y_(0.2)La_(0.2)Sm_(0.2)Eu_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7),and(Y_(0.2)La_(0.2)Gd_(0.2)Yb_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7))with severe lattice distortion were prepared using a solid phase reaction followed by a pressureless sintering method for the first time.Lattice distortion is accomplished by introducing rare earth elements with different cation radii and mass.The as-synthesized HE-RE_(2)Sn_(2)O_(7)ceramics possess high ATW emissivity(91.38%–95.41%),high NIR solar reflectivity(92.74%–97.62%),low thermal conductivity(1.080–1.619 W·m^(−1)·K^(−1)),and excellent chemical stability.On the one hand,the lattice distortion intensifies the asymmetry of the structural unit to cause a notable alteration in the electric dipole moment,ultimately enlarging the ATW emissivity.On the other hand,by selecting difficult excitation elements,HE-RE_(2)Sn_(2)O_(7),which has a wide band gap(Eg),exhibits high NIR solar reflectivity.Hence,the multi-component design can effectively enhance radiative cooling ability of HE-RE_(2)Sn_(2)O_(7)and provide a novel strategy for developing radiative cooling materials.
基金supported by the Lingchuang Research Project of China National Nuclear Corporation,the National Key Research and Development Program of China(No.2022YFB3504302)the key core technology research project in Beicang District,Ningbo(Grant No.2021BLG009)+4 种基金the key deployment project of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-3)the Fujian Provincial Natural Fund Project(Grant No.2021J05101)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001)the independent deployment project of Ganjiang Innovation Research Institute of Chinese Academy of Sciences(Grant No.E055A002)In addition,thanks for the assistance of Jinchi Huang from the School of Energy,Xiamen University for the ion irradiation experiment.
文摘Nuclear engineering materials are required to possess outstanding extreme environmental tolerance and irradiation resistance.A promising novel pyrochlore-type of(Sm_(0.2)Eu_(0.2)Gd_(0.2)Dy_(0.2)Er_(0.2))2 Hf_(2)O_(7)high-entropy ceramic(HE-RE2 Hf_(2)O_(7))for control rod was prepared by solid-state reaction method.The ion irradiation of HE-RE_(2) Hf_(2)O_(7)with 400 keV Kr+at 400℃was investigated using a 400 kV ion implanter and compared with single-component pyrochlore Gd2 Hf_(2)O_(7)to evaluate the irradiation resistance.For HE-RE2 Hf_(2)O_(7),the phase transition from pyrochlore to defective fluorite is revealed after irradiation at 60 dpa.After irradiation at 120 dpa,it maintained crystalline,which is comparable to Gd2 Hf_(2)O_(7)but superior to the titanate pyrochlores previously studied.Moreover,the lattice expansion of HE-RE2 Hf_(2)O_(7)(_(0.2)2%)is much lower than that of Gd2 Hf_(2)O_(7)(0.62%),indicating excellent irradiation damage resistance.Nanoindentation tests displayed an irradiation-induced increase in hardness and a decrease in elastic modulus by about 2.6%.Irradiation-induced segregation of elements is observed on the surface of irradiated samples.In addition,HE-RE2 Hf_(2)O_(7)demonstrates a more sluggish grain growth rate than Gd2 Hf_(2)O_(7)at 1200℃,suggesting better high-temperature stability.The linear thermal expansion coefficient of HE-RE2 Hf_(2)O_(7)is 10.7×10-6 K-1 at 298–1273 K.In general,it provides a new strategy for the design of the next advanced nuclear engineering materials.
基金supported by the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(No.XDA23030302)the Key Programs of the Chinese Academy of Sciences(No.KFZD-SW-315)the Start-Up Foundation from Huaqiao University(No.20BS109).
文摘Compared with the traditional liquid–liquid extraction method,solid-phase extraction agents are of great significance for the recovery of indium metal due to their convenience,free of organic solvents,and fully exposed activity.In this study,P_(2)O_(4)(di-2-ethylhexyl phosphoric acid)was chemically modified by using UiO-66 to form the solid-phase extraction agent P_(2)O_(4)-UiO-66-MOFs(di-2-ethylhexyl phosphoric acid-UiO-66-metal-organic frameworks)to adsorb In(Ⅲ).The results show that the Zr of UiO-66 bonds with the P-OH of P_(2)O_(4) to form a composite P_(2)O_(4)-UiO-66-MOF,which was confirmed by X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FT-IR).The adsorption process of indium on P_(2)O_(4)-UiO-66-MOFs followed pseudo first-order kinetics,and the adsorption isotherms fit the Langmuir adsorption isotherm model.The adsorption capabilities can reach 192.8 mg/g.After five consecutive cycles of adsorption-desorption-regeneration,the indium adsorption capacity by P_(2)O_(4)-UiO-66-MOFs remained above 99%.The adsorption mechanism analysis showed that the P=O and P-OH of P_(2)O_(4) molecules coated on the surface of P_(2)O_(4)-UiO-66-MOFs participated in the adsorption reaction of indium.In this paper,the extractant P_(2)O_(4) was modified into solid P_(2)O_(4)-UiO-66-MOFs for the first time.This work provides a new idea for the development of solid-phase extractants for the recovery of indium.