期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Developing Flow Pressure Drop and Friction Factor of Water in Copper Microchannels
1
作者 mirmanto 《Journal of Mechanics Engineering and Automation》 2013年第10期641-649,共9页
Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three... Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three channels with widths of 0.5 mm, 1.0 mm, 1.71 mm, a depth of 0.39 mm and a length of 62 mm were tested. For adiabatic tests, the temperature of the working fluid was maintained at 30 ℃, 60 ℃ and 90 ℃ without any heat fluxes supplied to the test section. The experimental conditions covered a range of Reynolds numbers from 234 to 3,430. For non-adiabatic tests, the inlet temperature and heat flux applied were 30 ℃ and 147 kW/m2 and only for the 0.635 mm channel. The friction factors obtained for the widest channel (Dh = 0.635 mm) are reported for both adiabatic and non-adiabatic experiments to assess possible temperature effects. The paper focuses on the effect of hydraulic diameter on pressure drop and friction factor over the experimental conditions. The pressure drop was found to decrease as the inlet temperature was increased, while the friction factors for the three test sections did not show significant differences. The experimental friction factors were in reasonable agreement with conventional developing flow theory. The effect of temperature on friction factor was not considerable as the friction factor with and without heat flux was almost the same. 展开更多
关键词 MICROCHANNEL single-phase flow pressure drop friction factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部