Breeding for salinity tolerance using Bangladeshi rice landraces and understand genetic diversity has been limited by the complex and polygenic nature of salt tolerance in rice genotypes. A genetic diversity and assoc...Breeding for salinity tolerance using Bangladeshi rice landraces and understand genetic diversity has been limited by the complex and polygenic nature of salt tolerance in rice genotypes. A genetic diversity and association mapping analysis was conducted using 96 germplasm accessions with variable response to salt stress at the seedling stage. These included86 landraces and 10 indica varieties and lines including Nona Bokra, from southern Bangladesh. A total of 220 alleles were detected at 58 Simple Sequence Repeat(SSR) marker loci randomly distributed on all 12 rice chromosomes and 8 Sequence Tagged Site(STS) markers developed for genes SKC1, DST, and SalT. The average gene diversity was 0.5075 and polymorphism information content value was 0.4426, respectively. Cluster analysis revealed that 68 and 21 accessions were clustered into 2 distinct groups, possibly corresponding to indica and japonica groups, respectively and the remaining 7 landraces were classified as an admixed group. In addition to Wn11463, the STS marker for SKC1, RM22418 on Chr. 8 was significantly associated with salinity tolerance, at the location of a QTL detected in previous studies. Our findings of favorable alleles associated with salinity tolerance in Bangladeshi rice landraces, as well as the development of STS markers for salt tolerance genes, will be helpful in future efforts to breed salinity tolerance in rice.展开更多
基金supported by the National High Technology Research and Development Program of China(2012AA101102)the Technology Research Program of Zhejiang province(2011C24001)
文摘Breeding for salinity tolerance using Bangladeshi rice landraces and understand genetic diversity has been limited by the complex and polygenic nature of salt tolerance in rice genotypes. A genetic diversity and association mapping analysis was conducted using 96 germplasm accessions with variable response to salt stress at the seedling stage. These included86 landraces and 10 indica varieties and lines including Nona Bokra, from southern Bangladesh. A total of 220 alleles were detected at 58 Simple Sequence Repeat(SSR) marker loci randomly distributed on all 12 rice chromosomes and 8 Sequence Tagged Site(STS) markers developed for genes SKC1, DST, and SalT. The average gene diversity was 0.5075 and polymorphism information content value was 0.4426, respectively. Cluster analysis revealed that 68 and 21 accessions were clustered into 2 distinct groups, possibly corresponding to indica and japonica groups, respectively and the remaining 7 landraces were classified as an admixed group. In addition to Wn11463, the STS marker for SKC1, RM22418 on Chr. 8 was significantly associated with salinity tolerance, at the location of a QTL detected in previous studies. Our findings of favorable alleles associated with salinity tolerance in Bangladeshi rice landraces, as well as the development of STS markers for salt tolerance genes, will be helpful in future efforts to breed salinity tolerance in rice.