The SPOT image analysis in Muzaffarabad Azad Kashmir,northwest Himalayas,Pakistan reveals that the Kashmir earthquake 2005 triggered a number of coseismic mass movements along the hanging wall block of the Muzaffaraba...The SPOT image analysis in Muzaffarabad Azad Kashmir,northwest Himalayas,Pakistan reveals that the Kashmir earthquake 2005 triggered a number of coseismic mass movements along the hanging wall block of the Muzaffarabad Fault.The Neelidandi and Langarpura rock falls have been identified as two major reactivated mass movements with an estimated volume of 3.1 × 106m3and 5.76 × 106m3,respectively.The Neelidandi and Langarpura mass movements were initiated during earthquake in the direction of northwest-southeast extension and northeastsouthwest directed thrusting,respectively.The Neelidandi rock fall occurred in sheared cherty dolomites and limestones of the Cambrian Muzaffarabad Formation,whereas the Langarpura rock fall occurred in alternating clays,shales,claystones,siltstones and sandstones of the Miocene Murree Formation.These rock units along the fault are highly fractured and jointed.The geotechnical maps and geological longitudinal profiles show the relationship between the geometrical characteristics and mechanism of these mass movements.Their characteristics were analyzed according to the role of topographic,seismic,geological and tectonic factors.The steep topography,sheared rocks,lithology,coseismic uplift and strong ground shaking of the hanging wall block along Muzaffarabad Fault facilitated the gravity collapse of these mass movements.展开更多
The Kashmir earthquake 2005 (magnitude MW 7.6) triggered thousands of mass move-ments in northern Pakistan. These mass movements were mainly rock falls, debris falls, rockslides and rock avalanches. The mass movemen...The Kashmir earthquake 2005 (magnitude MW 7.6) triggered thousands of mass move-ments in northern Pakistan. These mass movements were mainly rock falls, debris falls, rockslides and rock avalanches. The mass movements vary in size from a few hundred cubic meters up to about 100 million cubic meters estimated for the Hattian Bala rock avalanche, the biggest one associated with this earthquake. This mass movement, which moved in southeastern direction, created two natural dams on the valley bottom and blocked the water ways of the Karli and Tung tributaries of the Jhelum River. Topographic, lithologic and structural information were used to investigate the Hattian Bala rock ava-lanche. Geotechnical and structural maps were prepared to understand relationship between geology and structure of Hattian Bala rock avalanche. The geometry and failure mode of this rock avalanche are controlled by southeast plunging synclinal structures, lithology, a bedding parallel slip surface and a pre-existing old rockslide. The structural map shows that the mass movement failure was due to Danna and Dandbeh synclinal structures plunging southeast on the hanging wall block of the reacti-vated Muzaffarabad fault. The slip surface of the mass movement followed the bedding planes along mudstone, claystone and sandstone surfaces. The mass movement perfectly followed the pre-existing synclinal morphology of the Danna and Dandbeh synclines.展开更多
基金the University of Azad Jammu and Kashmir Muzaffarabad,for funding the research under Faculty Development Programme
文摘The SPOT image analysis in Muzaffarabad Azad Kashmir,northwest Himalayas,Pakistan reveals that the Kashmir earthquake 2005 triggered a number of coseismic mass movements along the hanging wall block of the Muzaffarabad Fault.The Neelidandi and Langarpura rock falls have been identified as two major reactivated mass movements with an estimated volume of 3.1 × 106m3and 5.76 × 106m3,respectively.The Neelidandi and Langarpura mass movements were initiated during earthquake in the direction of northwest-southeast extension and northeastsouthwest directed thrusting,respectively.The Neelidandi rock fall occurred in sheared cherty dolomites and limestones of the Cambrian Muzaffarabad Formation,whereas the Langarpura rock fall occurred in alternating clays,shales,claystones,siltstones and sandstones of the Miocene Murree Formation.These rock units along the fault are highly fractured and jointed.The geotechnical maps and geological longitudinal profiles show the relationship between the geometrical characteristics and mechanism of these mass movements.Their characteristics were analyzed according to the role of topographic,seismic,geological and tectonic factors.The steep topography,sheared rocks,lithology,coseismic uplift and strong ground shaking of the hanging wall block along Muzaffarabad Fault facilitated the gravity collapse of these mass movements.
基金supported by the University of Azad Jammuand Kashmir Muzaffarabad, Pakistan
文摘The Kashmir earthquake 2005 (magnitude MW 7.6) triggered thousands of mass move-ments in northern Pakistan. These mass movements were mainly rock falls, debris falls, rockslides and rock avalanches. The mass movements vary in size from a few hundred cubic meters up to about 100 million cubic meters estimated for the Hattian Bala rock avalanche, the biggest one associated with this earthquake. This mass movement, which moved in southeastern direction, created two natural dams on the valley bottom and blocked the water ways of the Karli and Tung tributaries of the Jhelum River. Topographic, lithologic and structural information were used to investigate the Hattian Bala rock ava-lanche. Geotechnical and structural maps were prepared to understand relationship between geology and structure of Hattian Bala rock avalanche. The geometry and failure mode of this rock avalanche are controlled by southeast plunging synclinal structures, lithology, a bedding parallel slip surface and a pre-existing old rockslide. The structural map shows that the mass movement failure was due to Danna and Dandbeh synclinal structures plunging southeast on the hanging wall block of the reacti-vated Muzaffarabad fault. The slip surface of the mass movement followed the bedding planes along mudstone, claystone and sandstone surfaces. The mass movement perfectly followed the pre-existing synclinal morphology of the Danna and Dandbeh synclines.