期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dynamic imaging of a small artery underneath skin surface of a human finger by optical coherence tomography
1
作者 Masato Ohmi mitsuo kuwabara Masamitsu Haruna 《Journal of Biomedical Science and Engineering》 2013年第3期249-252,共4页
OCT is a powerful tool for detection of physiological functions of micro organs underneath the human skin surface, besides the clinical application to ophthalmology, as recently demonstrated by the authors’ group. In... OCT is a powerful tool for detection of physiological functions of micro organs underneath the human skin surface, besides the clinical application to ophthalmology, as recently demonstrated by the authors’ group. In particular, dynamics of peripheral vessels can be observed clearly in the time-sequential OCT images. Among the vascular system, only the small artery has two physiological functions both for the elastic artery and for muscle-controlled one. It, therefore, is important for dynamic analysis of blood flow and circulation. In the time-sequential OCT images obtained with 25 frames/sec, it is found that the small artery makes a sharp response to sound stress for contraction and expansion while it continues pulsation in synchronization with the heartbeats. This result indicates that the small artery exhibits clearly the two physiological functions for blood flow and circulation. In response to sound stress, blood flow is controlled effectively by thickness change of the tunica media which consists of five to six layers of smooth muscles. It is thus found that the thickness of the tunica media changes remarkably in response to external stress, which shows the activity of the sympathetic nerve. The dynamic analysis of the small artery presented here will allow us not only to understand the mechanism of blood flow control and also to detect abnormal physiological functions in the whole vascular system. 展开更多
关键词 Optical Coherence Tomography (OCT) Dynamic OCT SMALL ARTERY Tunica Media SYMPATHETIC NERVE Vascular System
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部