Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells a...Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.展开更多
Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water sh...Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water shortages and the overuse of fertilizers.The field experiment had twelve treatments and a control(CK)trial including two irrigation amounts(I1,100%ETm;I2,60%ETm;where ETm is the maximum evapotranspiration),two nitrogen applications(N1,360 kg ha^(−1);N2,120 kg ha^(−1))and three biochar application levels(B1,60 t ha^(−1);B_(2),30 t ha^(−1)and B3,0 t ha^(−1)).A multi-objective synergistic irrigation-nitrogen-biochar application system for improving tomato yield,quality,water and nitrogen use efficiency,and greenhouse emissions was developed by integrating the techniques of experimentation and optimization.First,a coupled irrigation-nitrogen-biochar plot experiment was arranged.Then,tomato yield and fruit quality parameters were determined experimentally to establish the response relationships between irrigation-nitrogen-biochar dosage and yield,comprehensive quality of tomatoes(TCQ),irrigation water use efficiency(IWUE),partial factor productivity of nitrogen(PFPN),and net greenhouse gas emissions(NGE).Finally,a multi-objective dynamic optimization regulation model of irrigation-nitrogen-biochar resource allocation at different growth stages of tomato was constructed which was solved by the fuzzy programming method.The results showed that the application of irrigation and nitrogen to biochar promoted increase in yield,IWUE and PFPN,while it had an inhibitory effect on NGE.In addition,the optimal allocation amounts of water and fertilizer were different under different scenarios.The yield of the S1 scenario increased by 8.31%compared to the B_(1)I_(1)N_(2) treatment;TCQ of the S2 scenario increased by 5.14%compared to the B_(2)I_(2)N_(1) treatment;IWUE of the S3 scenario increased by 10.01%compared to the B1I2N2 treatment;PFPN of the S4 scenario increased by 9.35%compared to the B_(1)I_(1)N_(2) treatment;and NGE of the S5 scenario decreased by 11.23%compared to the B_(2)I1N1 treatment.The optimization model showed that the coordination of multiple objectives considering yield,TCQ,IWUE,PFPN,and NGE increased on average from 4.44 to 69.02%compared to each treatment when the irrigation-nitrogen-biochar dosage was 205.18 mm,186 kg ha^(−1)and 43.31 t ha^(−1),respectively.This study provides a guiding basis for the sustainable management of water and fertilizer in greenhouse tomato production under drip irrigation fertilization conditions.展开更多
Objective The expression of HERG in common bone tumors is scarcely reported and there is a lack of dedicated studies.This study aimed to investigated the expression of HERG in several common musculoskeletal tumors.Met...Objective The expression of HERG in common bone tumors is scarcely reported and there is a lack of dedicated studies.This study aimed to investigated the expression of HERG in several common musculoskeletal tumors.Methods Immunohistochemical staining,RT-PCR,and Western blotting were used to observe HERG expression differences in various tissues and cell lines.Results HERG was differentially expressed in different malignant tumors,both at a differential protein level and localization within tumors.HERG was not expressed in normal bone tissue.The HERG inhibitor E-4031 markedly inhibited the proliferation of osteosarcoma cell lines.Conclusion HERG was highly expressed in malignant tumors.Blocking of HERG can effectively inhibit the proliferation of bone tumors.展开更多
The genome of cells is constantly challenged by DNA damages from endogenous metabolism and environmental agents.These damages could potentially lead to genomic instability and thus to tumorigenesis.To cope with the th...The genome of cells is constantly challenged by DNA damages from endogenous metabolism and environmental agents.These damages could potentially lead to genomic instability and thus to tumorigenesis.To cope with the threats, cells have evolved an intricate network, namely DNA damage response(DDR) system that senses and deals with the lesions of DNA.Although the DDR operates by relatively uniform principles, different tissues give rise to distinct types of DNA damages combined with high diversity of microenvironments across tissues.In this review, we discuss recent findings on specific DNA damage among different tissues as well as the main DNA repair way in corresponding microenvironments, highlighting tissue specificity of DDR and tumorigenesis.We hope the current review will provide further insights into molecular process of tumorigenesis and generate new strategies for cancer treatment.展开更多
Background: Bringing free-living animals into captivity subjects them to the stress of both capture and captivity, leading to the alteration of normal physiological processes and behaviors through activation of the hy...Background: Bringing free-living animals into captivity subjects them to the stress of both capture and captivity, leading to the alteration of normal physiological processes and behaviors through activation of the hypothalamic– pituitary–adrenal axis. In free-living birds, although elevated plasma corticosterone (CORT) is an important adaptation regulating physiological and behavioral responses during the process of capture and captivity stress, little information is currently available on the effects of such stress on plasma metabolite levels. Methods: We examined the effects of immediate capture and 24-h captivity on body mass, body condition, plasma CORT, and metabolite levels including glucose (Glu), triglyceride (TG), total cholesterol (TC), uric acid (UA), in breeding Eurasian Tree Sparrows (Passer montanus). Results: CORT and Glu levels were increased significantly by the stress of capture, whereas TC and UA levels decreased. Body mass, body condition declined notably after 24 h in captivity, but CORT, Glu, and UA levels increased. Furthermore, male sparrows had lower TG levels after both capture and captivity than those of females. The relationships between plasma CORT and metabolite levels varied between sexes. Conclusions: Our results revealed that the metabolic status of Eurasian Tree Sparrows could be dramatically altered by capture and captivity. Monitoring the dynamic effects of both capture and captivity on plasma CORT, metabolite levels in a free-living bird contributes to a better understanding of the stress-induced pathways involved in sexdependent energy mobilization.展开更多
Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some excep...Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.展开更多
基金supported by the Stem Cell and Translation National Key Project,No.2016YFA0101403(to ZC)the National Natural Science Foundation of China,Nos.82171250 and 81973351(to ZC)+6 种基金the Natural Science Foundation of Beijing,No.5142005(to ZC)Beijing Talents Foundation,No.2017000021223TD03(to ZC)Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan,No.CIT&TCD20180333(to ZC)Beijing Municipal Health Commission Fund,No.PXM2020_026283_000005(to ZC)Beijing One Hundred,Thousand,and Ten Thousand Talents Fund,No.2018A03(to ZC)the Royal Society-Newton Advanced Fellowship,No.NA150482(to ZC)the National Natural Science Foundation of China for Young Scientists,No.31900740(to SL)。
文摘Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
基金supported by the National Natural Science Foundation of China(52222902 and 52079029)。
文摘Integrated water and fertilizer management is important for promoting sustainable development of facility agriculture,and biochar plays an important role in guaranteeing food production,as well as alleviating water shortages and the overuse of fertilizers.The field experiment had twelve treatments and a control(CK)trial including two irrigation amounts(I1,100%ETm;I2,60%ETm;where ETm is the maximum evapotranspiration),two nitrogen applications(N1,360 kg ha^(−1);N2,120 kg ha^(−1))and three biochar application levels(B1,60 t ha^(−1);B_(2),30 t ha^(−1)and B3,0 t ha^(−1)).A multi-objective synergistic irrigation-nitrogen-biochar application system for improving tomato yield,quality,water and nitrogen use efficiency,and greenhouse emissions was developed by integrating the techniques of experimentation and optimization.First,a coupled irrigation-nitrogen-biochar plot experiment was arranged.Then,tomato yield and fruit quality parameters were determined experimentally to establish the response relationships between irrigation-nitrogen-biochar dosage and yield,comprehensive quality of tomatoes(TCQ),irrigation water use efficiency(IWUE),partial factor productivity of nitrogen(PFPN),and net greenhouse gas emissions(NGE).Finally,a multi-objective dynamic optimization regulation model of irrigation-nitrogen-biochar resource allocation at different growth stages of tomato was constructed which was solved by the fuzzy programming method.The results showed that the application of irrigation and nitrogen to biochar promoted increase in yield,IWUE and PFPN,while it had an inhibitory effect on NGE.In addition,the optimal allocation amounts of water and fertilizer were different under different scenarios.The yield of the S1 scenario increased by 8.31%compared to the B_(1)I_(1)N_(2) treatment;TCQ of the S2 scenario increased by 5.14%compared to the B_(2)I_(2)N_(1) treatment;IWUE of the S3 scenario increased by 10.01%compared to the B1I2N2 treatment;PFPN of the S4 scenario increased by 9.35%compared to the B_(1)I_(1)N_(2) treatment;and NGE of the S5 scenario decreased by 11.23%compared to the B_(2)I1N1 treatment.The optimization model showed that the coordination of multiple objectives considering yield,TCQ,IWUE,PFPN,and NGE increased on average from 4.44 to 69.02%compared to each treatment when the irrigation-nitrogen-biochar dosage was 205.18 mm,186 kg ha^(−1)and 43.31 t ha^(−1),respectively.This study provides a guiding basis for the sustainable management of water and fertilizer in greenhouse tomato production under drip irrigation fertilization conditions.
基金Suppported by a grant from the Key Research and Development Program of Shaanxi Province Project(No.2018YBXM-SF-12-2)
文摘Objective The expression of HERG in common bone tumors is scarcely reported and there is a lack of dedicated studies.This study aimed to investigated the expression of HERG in several common musculoskeletal tumors.Methods Immunohistochemical staining,RT-PCR,and Western blotting were used to observe HERG expression differences in various tissues and cell lines.Results HERG was differentially expressed in different malignant tumors,both at a differential protein level and localization within tumors.HERG was not expressed in normal bone tissue.The HERG inhibitor E-4031 markedly inhibited the proliferation of osteosarcoma cell lines.Conclusion HERG was highly expressed in malignant tumors.Blocking of HERG can effectively inhibit the proliferation of bone tumors.
基金supported by the National Natural Science Foundation of China (Grant No.81622035, 81672610, and 81521002)
文摘The genome of cells is constantly challenged by DNA damages from endogenous metabolism and environmental agents.These damages could potentially lead to genomic instability and thus to tumorigenesis.To cope with the threats, cells have evolved an intricate network, namely DNA damage response(DDR) system that senses and deals with the lesions of DNA.Although the DDR operates by relatively uniform principles, different tissues give rise to distinct types of DNA damages combined with high diversity of microenvironments across tissues.In this review, we discuss recent findings on specific DNA damage among different tissues as well as the main DNA repair way in corresponding microenvironments, highlighting tissue specificity of DDR and tumorigenesis.We hope the current review will provide further insights into molecular process of tumorigenesis and generate new strategies for cancer treatment.
基金supported by the National Natural Science Foundation of China(NSFC,31672292)the Natural Science Foundation of Hebei Province(C2017205059)+1 种基金the foundation of China Scholarship Council(201408130068) to D.Lithe NSFC(31770445)to Y.Wu,the NSFC(31372201)to X.Gao
文摘Background: Bringing free-living animals into captivity subjects them to the stress of both capture and captivity, leading to the alteration of normal physiological processes and behaviors through activation of the hypothalamic– pituitary–adrenal axis. In free-living birds, although elevated plasma corticosterone (CORT) is an important adaptation regulating physiological and behavioral responses during the process of capture and captivity stress, little information is currently available on the effects of such stress on plasma metabolite levels. Methods: We examined the effects of immediate capture and 24-h captivity on body mass, body condition, plasma CORT, and metabolite levels including glucose (Glu), triglyceride (TG), total cholesterol (TC), uric acid (UA), in breeding Eurasian Tree Sparrows (Passer montanus). Results: CORT and Glu levels were increased significantly by the stress of capture, whereas TC and UA levels decreased. Body mass, body condition declined notably after 24 h in captivity, but CORT, Glu, and UA levels increased. Furthermore, male sparrows had lower TG levels after both capture and captivity than those of females. The relationships between plasma CORT and metabolite levels varied between sexes. Conclusions: Our results revealed that the metabolic status of Eurasian Tree Sparrows could be dramatically altered by capture and captivity. Monitoring the dynamic effects of both capture and captivity on plasma CORT, metabolite levels in a free-living bird contributes to a better understanding of the stress-induced pathways involved in sexdependent energy mobilization.
基金supported by grants from the National Natural Science Foundation of China (NSFC, 31330073, 31672292)the Natural Science Foundation of the Department of Education, Hebei Province (YQ2014024)
文摘Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.