Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision,which,therefore,has been placed at the forefront of scientific attention.In particular,due to t...Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision,which,therefore,has been placed at the forefront of scientific attention.In particular,due to the high photochemical stability,low toxicity,rich working mechanisms,and superior thermometric performance,lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics,property analysis of in-situ tracking,biomedical diagnosis and therapy,and wearable e-health monitoring.Despite recent progresses,it remains debate in terms of the underlying temperature-sensing mechanisms,the quantitative characterization of performance,and the reliability of temperature readouts.In this review,we show the origin of thermal response luminescence,rationalize the ratiometric scheme or thermometric mechanisms,delve into the problems in the characterization of thermometric performance,discuss the universal rules for the quantitative comparison,and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers.Finally,we cast a look at the challenges and emerging opportunities for further advances in this field.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12074347,61935009,and 12004346)the Science Foundation for Distinguished Young Scholars of Henan Province(No.212300410019)+1 种基金the Project funded by China Postdoctoral Science Foundation(No.2019M662508)the Young Talent Support Project of Henan Province(No.222300420322).
文摘Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision,which,therefore,has been placed at the forefront of scientific attention.In particular,due to the high photochemical stability,low toxicity,rich working mechanisms,and superior thermometric performance,lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics,property analysis of in-situ tracking,biomedical diagnosis and therapy,and wearable e-health monitoring.Despite recent progresses,it remains debate in terms of the underlying temperature-sensing mechanisms,the quantitative characterization of performance,and the reliability of temperature readouts.In this review,we show the origin of thermal response luminescence,rationalize the ratiometric scheme or thermometric mechanisms,delve into the problems in the characterization of thermometric performance,discuss the universal rules for the quantitative comparison,and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers.Finally,we cast a look at the challenges and emerging opportunities for further advances in this field.