Herpes simplex virus-1 (HSV-1) remains a leading cause of viral disease worldwide and is spread by direct contact with infected lesions. There is no vaccine against HSV-1 infections and there remains a need to identif...Herpes simplex virus-1 (HSV-1) remains a leading cause of viral disease worldwide and is spread by direct contact with infected lesions. There is no vaccine against HSV-1 infections and there remains a need to identify therapeutics that could reduce the spread. In this study various hispolon compounds were analyzed to determine their antiviral potential against HSV-1 infections in cultured Vero cells. To determine the effects on infectivity and possible mechanisms of inhibition, the following assays were conducted. In vitro cytotoxicity assays were conducted to determine the effect of the compounds on cell viability and the maximum non-cytotoxic concentrations. Antiviral assays measured cell viability, percent inhibition of infection following treatment with the compounds, and the effect on the viral infection cycle. These effects were visualized using inverted light and fluorescent microscopy. Of the 24 hispolons tested, only hispolon pyrazole-1 (HISP-1) demonstrated antiviral effects. HISP-1 was demonstrated to effect early stages in HSV-1 infection in cultured Vero cells (attachment, penetration, and post-penetration). In silico modeling analyses were conducted to analyze the interactions between HISP-1 and viral glycoprotein D (gD). HISP-1 is safe at concentrations tested and is effective in inhibiting infection of HSV-1 in cultured cells. HISP-1 has potential for therapeutic use as an antiviral against HSV-1 infection, could work in synergy with other antivirals that work be a different modality, and could be developed as a component of a topical agent to reduce the spread of HSV-1 infections.展开更多
文摘Herpes simplex virus-1 (HSV-1) remains a leading cause of viral disease worldwide and is spread by direct contact with infected lesions. There is no vaccine against HSV-1 infections and there remains a need to identify therapeutics that could reduce the spread. In this study various hispolon compounds were analyzed to determine their antiviral potential against HSV-1 infections in cultured Vero cells. To determine the effects on infectivity and possible mechanisms of inhibition, the following assays were conducted. In vitro cytotoxicity assays were conducted to determine the effect of the compounds on cell viability and the maximum non-cytotoxic concentrations. Antiviral assays measured cell viability, percent inhibition of infection following treatment with the compounds, and the effect on the viral infection cycle. These effects were visualized using inverted light and fluorescent microscopy. Of the 24 hispolons tested, only hispolon pyrazole-1 (HISP-1) demonstrated antiviral effects. HISP-1 was demonstrated to effect early stages in HSV-1 infection in cultured Vero cells (attachment, penetration, and post-penetration). In silico modeling analyses were conducted to analyze the interactions between HISP-1 and viral glycoprotein D (gD). HISP-1 is safe at concentrations tested and is effective in inhibiting infection of HSV-1 in cultured cells. HISP-1 has potential for therapeutic use as an antiviral against HSV-1 infection, could work in synergy with other antivirals that work be a different modality, and could be developed as a component of a topical agent to reduce the spread of HSV-1 infections.