The Flying Ad-hoc Networks(FANETs)is characterized by the transition from a single large Unmanned Aerial Vehicle(UAV)to multiple small UAVs connected in an ad-hoc fashion.Since high mobility is the core feature of suc...The Flying Ad-hoc Networks(FANETs)is characterized by the transition from a single large Unmanned Aerial Vehicle(UAV)to multiple small UAVs connected in an ad-hoc fashion.Since high mobility is the core feature of such networks,they are prone to route breaks within the links.The issue of connectivity loss can be coped with,to some extent,by making use of omnidirectional antennas.Such modification,however,curtails Quality-of-Service(QoS)requirements of networks in terms of bandwidth,media access delay,coverage and others.Alternately,directional antennas have advantages over omnidirectional antennas such as improved transmission range,spatial reuse and high throughput.Nevertheless,its introduction raises location-dependent issues to the Medium Access Control(MAC)protocol.This calls for an efficient MAC protocol that can cater to new directional antenna models and,at the same time,can counter the constraints associated with the dynamic UAVs.Therefore,in this article,we consider a UAV interconnection mechanism that lets the UAVs execute the communication tasks using the directional MAC protocol.The technique is advantageous as compared to the approach of utilizing the MAC protocol using omnidirectional antennas.The scheme is being implemented as a case study for Industry 4.0 inventory and traceability applications in the warehouse.For modeling and simulation purposes,we use the Optimized Network Engineering Tool(OPNET)and aim to seek an evaluation with respect to throughput,media access delay,retransmission attempts and data dropped.The results obtained demonstrate the effectiveness of the proposed scheme.展开更多
文摘The Flying Ad-hoc Networks(FANETs)is characterized by the transition from a single large Unmanned Aerial Vehicle(UAV)to multiple small UAVs connected in an ad-hoc fashion.Since high mobility is the core feature of such networks,they are prone to route breaks within the links.The issue of connectivity loss can be coped with,to some extent,by making use of omnidirectional antennas.Such modification,however,curtails Quality-of-Service(QoS)requirements of networks in terms of bandwidth,media access delay,coverage and others.Alternately,directional antennas have advantages over omnidirectional antennas such as improved transmission range,spatial reuse and high throughput.Nevertheless,its introduction raises location-dependent issues to the Medium Access Control(MAC)protocol.This calls for an efficient MAC protocol that can cater to new directional antenna models and,at the same time,can counter the constraints associated with the dynamic UAVs.Therefore,in this article,we consider a UAV interconnection mechanism that lets the UAVs execute the communication tasks using the directional MAC protocol.The technique is advantageous as compared to the approach of utilizing the MAC protocol using omnidirectional antennas.The scheme is being implemented as a case study for Industry 4.0 inventory and traceability applications in the warehouse.For modeling and simulation purposes,we use the Optimized Network Engineering Tool(OPNET)and aim to seek an evaluation with respect to throughput,media access delay,retransmission attempts and data dropped.The results obtained demonstrate the effectiveness of the proposed scheme.