The effects of temperature on net photosynthesis and stomatal conductance, emission of foliar volatile organic compounds (VOCs), and phenolics were investigated after exposing Cordeauxia edulis seedlings to control (2...The effects of temperature on net photosynthesis and stomatal conductance, emission of foliar volatile organic compounds (VOCs), and phenolics were investigated after exposing Cordeauxia edulis seedlings to control (27/19°C) and three levels of elevated (32/23, 37/27, or 42/31°C) day/night temperature regimes in controlled growth chambers. Emissions of foliar VOC were measured on 7th and 14th day (d) of exposures, whereas net photosynthesis and stomatal conductance were measured on the 8th and 15th d. Net photosynthesis and stomatal conductance were not significantly affected by elevated temperatures. Emission rate of isoprene increased by 4-fold with 10°C rise from the control on 7th d of exposure. Emission rates of monoterpenes, sesquiterpenes and total isoprenoids increased to 2-5-fold higher than that of control plants with 5°C rise. Foliar isoprene emission peaked at daytime maximum of 37°C and the mono- and sesquiterpenes at 32°C. Few individual foliar phenolics, and total foliar phenolics showed significant concentration differences between treatments. Although high VOC emissions under warming appeared to help plants to sustain abiotic stresses, arid/semi-arid species might substantially release highly reactive compounds that affect atmospheric chemistry. Hence, more studies are required on plant species of arid/semi-arid ecosystems of Africa to estimate the emission patterns and their role in atmospheric chemistry under the predicted future atmospheric warming.展开更多
Pyridopyridazines are an important kind of nitrogen atom containing heterocyclic compounds due to their synthetic and pharmacological versatility. This fused heterocycle system represents a common structural feature f...Pyridopyridazines are an important kind of nitrogen atom containing heterocyclic compounds due to their synthetic and pharmacological versatility. This fused heterocycle system represents a common structural feature for many bioactive compounds showing a variety of pharmacological activities which makes it an attractive scaffold for the design and development of new drugs. This mini review summarizes an updated information described in recent literature, about the most relevant pharmacological properties of pyridopyridazines derivatives.展开更多
文摘The effects of temperature on net photosynthesis and stomatal conductance, emission of foliar volatile organic compounds (VOCs), and phenolics were investigated after exposing Cordeauxia edulis seedlings to control (27/19°C) and three levels of elevated (32/23, 37/27, or 42/31°C) day/night temperature regimes in controlled growth chambers. Emissions of foliar VOC were measured on 7th and 14th day (d) of exposures, whereas net photosynthesis and stomatal conductance were measured on the 8th and 15th d. Net photosynthesis and stomatal conductance were not significantly affected by elevated temperatures. Emission rate of isoprene increased by 4-fold with 10°C rise from the control on 7th d of exposure. Emission rates of monoterpenes, sesquiterpenes and total isoprenoids increased to 2-5-fold higher than that of control plants with 5°C rise. Foliar isoprene emission peaked at daytime maximum of 37°C and the mono- and sesquiterpenes at 32°C. Few individual foliar phenolics, and total foliar phenolics showed significant concentration differences between treatments. Although high VOC emissions under warming appeared to help plants to sustain abiotic stresses, arid/semi-arid species might substantially release highly reactive compounds that affect atmospheric chemistry. Hence, more studies are required on plant species of arid/semi-arid ecosystems of Africa to estimate the emission patterns and their role in atmospheric chemistry under the predicted future atmospheric warming.
文摘Pyridopyridazines are an important kind of nitrogen atom containing heterocyclic compounds due to their synthetic and pharmacological versatility. This fused heterocycle system represents a common structural feature for many bioactive compounds showing a variety of pharmacological activities which makes it an attractive scaffold for the design and development of new drugs. This mini review summarizes an updated information described in recent literature, about the most relevant pharmacological properties of pyridopyridazines derivatives.