期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Monitoring of Temporal and Spatial Changes of Land Use and Land Cover in Metropolitan Regions through Remote Sensing and GIS 被引量:1
1
作者 mohamed ali mohamed 《Natural Resources》 2017年第5期353-369,共17页
The use of remote sensing techniques and subsequent analysis by means of geographical information system (GIS) offers an effective method for monitoring temporal and spatial changes of landscapes. This work studies th... The use of remote sensing techniques and subsequent analysis by means of geographical information system (GIS) offers an effective method for monitoring temporal and spatial changes of landscapes. This work studies the urbanization processes and associated threats to natural ecosystems and resources in the metropolitan areas of Berlin and Erlangen-Fürth-Nürnber?Schwabach (EFNS). To compute the land use/cover (LULC) of the study areas, a supervised classification of “maximum likelihood” using Landsat data for the years of 1972, 1985, 1998, 2003, and 2015 is used. Results show that the built-up area is the dominant land use in both regions throughout the study period. This land use has increased at the expense of green and open areas in EFNS and at the expense of agricultural land in Berlin. Likewise, 5% of forest in EFNS is replaced with urban infrastructure. However, the amount of forest in Berlin increased by 3%. While EFNS experienced relatively big changes in its water bodies from 1972 to 1985, changes in water bodies in Berlin were rather slight during the last 40 years. The overall accuracy of our remotely sensed LULC maps was between 88% and 94% in Berlin and between 85.87% and 87.4% for EFNS. The combination of remote sensing and GIS appears to be an indispensable tool for monitoring changes in LULC in urban areas and help improving LU planning to avoid environmental and ecological problems. 展开更多
关键词 LAND Use CHANGE CHANGE Detection REMOTE Sensing GIS METROPOLIS City METROPOLITAN Region
下载PDF
Price Prediction of Seasonal Items Using Machine Learning and Statistical Methods
2
作者 mohamed ali mohamed Ibrahim Mahmoud El-Henawy Ahmad Salah 《Computers, Materials & Continua》 SCIE EI 2022年第2期3473-3489,共17页
Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statist... Price prediction of goods is a vital point of research due to how common e-commerce platforms are.There are several efforts conducted to forecast the price of items using classicmachine learning algorithms and statisticalmodels.These models can predict prices of various financial instruments,e.g.,gold,oil,cryptocurrencies,stocks,and second-hand items.Despite these efforts,the literature has no model for predicting the prices of seasonal goods(e.g.,Christmas gifts).In this context,we framed the task of seasonal goods price prediction as a regression problem.First,we utilized a real online trailer dataset of Christmas gifts and then we proposed several machine learningbased models and one statistical-based model to predict the prices of these seasonal products.Second,we utilized a real-life dataset of Christmas gifts for the prediction task.Then,we proposed support vector regressor(SVR),linear regression,random forest,and ridgemodels as machine learningmodels for price prediction.Next,we proposed an autoregressive-integrated-movingaverage(ARIMA)model for the same purpose as a statistical-based model.Finally,we evaluated the performance of the proposed models;the comparison shows that the best performing model was the random forest model,followed by the ARIMA model. 展开更多
关键词 ARIMA machine learning price prediction random forest RIDGE support vector regressor
下载PDF
Analysis of Digital Elevation Model and LNDSAT Data Using Geographic Information System for Soil Mapping in Urban Areas
3
作者 mohamed ali mohamed 《Natural Resources》 2017年第12期767-787,共21页
This study applies digital analysis methods of topographic data derived from digital elevation models (DEMs) and Landsat remotely sensed spectral data using GIS tools to evaluate the quality and limitations of the mor... This study applies digital analysis methods of topographic data derived from digital elevation models (DEMs) and Landsat remotely sensed spectral data using GIS tools to evaluate the quality and limitations of the morphometric parameters (terrain attributes: TAs). This aims to check its suitability for digital soil mapping (DSM) and survey in urban areas at the target scale 1:50,000. This scale represents the standard scale level for compiling soil inventories within all German states. The study is conducted on an urban area of 112.68 km2 in the southwest part of the state of Berlin in Germany. These relief units are the basis for determining the soil mapping units at the scale of 1:50,000. The generated preliminary soil map was compared to soil maps made using traditional soil survey methods. For the mainly natural soils, the equivalence area is 94.91%, and for the anthropogenic soils, the equivalence area is 95.34%. The proposed methodology is adequate for preliminary mapping of soil units based on the digital derivation of TAs. Landsat scenes are spatially explicit, physical representations of environmental covariates on the land surface. The free DEM-ASTER in combination with Landsat OLI images is found to be the appropriate model to represent the terrain surface and derive the TAs for environmental modeling and fitting of derivation the relief units and their topography features. However, the 30 m spatial resolution and the fairly coarse spectral resolution of DEMs and Landsat images limit their utility for digital soil mapping at this scale in urban areas with little topographic variation. 展开更多
关键词 SOIL Mapping SOIL SURVEY TERRAIN Modeling TERRAIN Attributes SPATIAL ANALYSIS DEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部