Despite advances in intelligent medical care,difficulties remain.Due to its complicated governance,designing,planning,improving,and managing the cardiac system remains difficult.Oversight,including intelligent monitor...Despite advances in intelligent medical care,difficulties remain.Due to its complicated governance,designing,planning,improving,and managing the cardiac system remains difficult.Oversight,including intelligent monitoring,feedback systems,and management practises,is unsuccessful.Current platforms cannot deliver lifelong personal health management services.Insufficient accuracy in patient crisis warning programmes.No frequent,direct interaction between healthcare workers and patients is visible.Physical medical systems and intelligent information systems are not integrated.This study introduces the Advanced Cardiac Twin(ACT)model integrated with Artificial Neural Network(ANN)to handle real-time monitoring,decision-making,and crisis prediction.THINGSPEAK is used to create an IoT platform that accepts patient sensor data.Importing these data sets into MATLAB allows display and analysis.A myocardial ischemia research examined Health Condition Tracking’s(HCT’s)potential.In the case study,75%of the training sets(Xt),15%of the verified data,and 10%of the test data were used.Training set feature values(Xt)were given with the data.Training,Validation,and Testing accuracy rates were 99.9%,99.9%,and 99.9%,respectively.General research accuracy was 99.9%.The proposed HCT system and Artificial Neural Network(ANN)model gather historical and real-time data to manage and anticipate cardiac issues.展开更多
Biointerface design that targets osteogenesis is a growing area of research with significant implications in biomedicine. Materials known to either support or stimulate osteogenesis are composed of a biomimetic cerami...Biointerface design that targets osteogenesis is a growing area of research with significant implications in biomedicine. Materials known to either support or stimulate osteogenesis are composed of a biomimetic ceramic material, such as bioactive glass. Bioactive glass is osteoproductive, and the potential for osteoproductivity can be enhanced by the addition of proteins or other additives designed to alter functionality. In addition, soluble growth factors are often added to osteogenic culture on bioactive glasses, further intensifying the effects of the material. In this paper, synthetic peptide combinations, covalently bound to a three-dimensional bioactive glass network, are used to mimic the effects of the whole fibronectin and bone morphogenetic proteins (BMP) 2 and 9. Peptide-silanes possessing critical binding sequences from each of these proteins are synthesized and used to decorate the surface of three-dimensional (3D) nano-macroporous bioactive glass. MC3T3 preosteoblast cells are then assessed for differentiation on the materials in the absence of soluble differentiation cues. MC3T3 preosteoblasts undergo enhanced differentiation on the peptide-silane samples over the standard nano-macroporous bioactive glass, and the differentiation capacity of the cells exposes only to peptide-silane surfaces approaches that of cells grown in chemical differentiation induction media.展开更多
文摘Despite advances in intelligent medical care,difficulties remain.Due to its complicated governance,designing,planning,improving,and managing the cardiac system remains difficult.Oversight,including intelligent monitoring,feedback systems,and management practises,is unsuccessful.Current platforms cannot deliver lifelong personal health management services.Insufficient accuracy in patient crisis warning programmes.No frequent,direct interaction between healthcare workers and patients is visible.Physical medical systems and intelligent information systems are not integrated.This study introduces the Advanced Cardiac Twin(ACT)model integrated with Artificial Neural Network(ANN)to handle real-time monitoring,decision-making,and crisis prediction.THINGSPEAK is used to create an IoT platform that accepts patient sensor data.Importing these data sets into MATLAB allows display and analysis.A myocardial ischemia research examined Health Condition Tracking’s(HCT’s)potential.In the case study,75%of the training sets(Xt),15%of the verified data,and 10%of the test data were used.Training set feature values(Xt)were given with the data.Training,Validation,and Testing accuracy rates were 99.9%,99.9%,and 99.9%,respectively.General research accuracy was 99.9%.The proposed HCT system and Artificial Neural Network(ANN)model gather historical and real-time data to manage and anticipate cardiac issues.
文摘Biointerface design that targets osteogenesis is a growing area of research with significant implications in biomedicine. Materials known to either support or stimulate osteogenesis are composed of a biomimetic ceramic material, such as bioactive glass. Bioactive glass is osteoproductive, and the potential for osteoproductivity can be enhanced by the addition of proteins or other additives designed to alter functionality. In addition, soluble growth factors are often added to osteogenic culture on bioactive glasses, further intensifying the effects of the material. In this paper, synthetic peptide combinations, covalently bound to a three-dimensional bioactive glass network, are used to mimic the effects of the whole fibronectin and bone morphogenetic proteins (BMP) 2 and 9. Peptide-silanes possessing critical binding sequences from each of these proteins are synthesized and used to decorate the surface of three-dimensional (3D) nano-macroporous bioactive glass. MC3T3 preosteoblast cells are then assessed for differentiation on the materials in the absence of soluble differentiation cues. MC3T3 preosteoblasts undergo enhanced differentiation on the peptide-silane samples over the standard nano-macroporous bioactive glass, and the differentiation capacity of the cells exposes only to peptide-silane surfaces approaches that of cells grown in chemical differentiation induction media.