Stipagrostis ciliata(Desf.)De Winter is a pastoral C4 grass grown in arid regions.This research work focused on assessing the growth of S.ciliata accessions derived from two different climate regions(a wet arid region...Stipagrostis ciliata(Desf.)De Winter is a pastoral C4 grass grown in arid regions.This research work focused on assessing the growth of S.ciliata accessions derived from two different climate regions(a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia(coded as WA),and a dry arid region from the Matmata Mountain in the south of Tunisia(coded as DA))under water stress conditions.Specifically,the study aimed to investigate the phenological and physiological responses of potted S.ciliata seedlings under different water treatments:T_(1)(200 mm/a),T_(2)(150 mm/a),T_(3)(100 mm/a)and T_(4)(50 mm/a).Growth phenology,net photosynthesis(Pn),stomatal conductance(gs),midday leaf water potential(Ψmd),predawn leaf water potential(Ψpd),soil water content(SWC)and soil water potential(Ψs)were observed during the water stress cycle(from December 2016 to November 2017).The obtained results showed that the highest growth potential of the two accessions(WA and DA)was recorded under treatment T_(1).The two accessions responded differently and significantly to water stress.Photosynthetic parameters,such as Pn and gs,decreased sharply under treatments T_(2),T_(3)and T_(4)compared to treatment T_(1).The higher water stress increased the R/S ratio(the ratio of root dry biomass to shoot dry biomass),with values of 1.29 and 2.74 under treatment T_(4)for accessions WA and DA,respectively.Principal component analysis(PCA)was applied,and the separation of S.ciliata accessions on the first two axes of PCA(PC1 and PC2)suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T_(1)and T_(2).This accession was characterized by a high number of spikes.For treatments T_(3)and T_(4),both accessions were detected in the negative extremity of PC1 and PC2.They were characterized by a high root dry biomass.Therefore,S.ciliata accessions responded to water stress by displaying significant changes in their behaviours.Accession WA from the Bou Hedma National Park(wet arid region)showed higher drought tolerance than accession DA from the Matmata Mountain(dry arid region).S.ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.展开更多
The greatest failure rate of reforestation programs is basically related to water deficit,especially at the seedling stage.Therefore,the main objective of this work is to investigate the responses of three accessions ...The greatest failure rate of reforestation programs is basically related to water deficit,especially at the seedling stage.Therefore,the main objective of this work is to investigate the responses of three accessions of carob trees(Ceratonia siliqua L.)with 2-year-old from different climate regions to drought generated by four water treatments:Tc(250 mm),T1(180 mm),T2(100 mm),and T3(50 mm).The first accession(A1)comes from the protected national park of Ichkeul in northern Tunisia.This zone belongs to the bioclimatic sub-humid stage.The second accession(A2)comes from Melloulech,located in the center-east of Tunisia,belonging to the bioclimatic semi-arid stage.The third accession(A3)comes from the mountain of Matmata,located in the south of Tunisia,belonging to the bioclimatic hyper-arid stage.The experiment was undertaken in a greenhouse.Gaz exchange indices(net photosynthesis(A),stomatal conductance(gs),transpiration rate(E),and internal CO_(2) concentration(Ci))were determined.Predawn(Ψpd)and midday(Ψmd)leaf water potentials,relative soil water content(SWC),and morphological parameters(plant height(H),number of leaves(NL),number of leaflets(Nl),and number of branches(NB))were estimated.The results showed that significant differences(P<0.001)were found between physiological and morphological parameters of each accession.The highest growth potential was recorded for Tc treatment in both accessions A1 and A2.Significant decreases in gs,E,Ci,and SWC were recorded with the increases in water stress applied from treatment T1 to T3.Positive and significant correlations were found between SWC andΨpd for all studied accessions.Ψpd andΨmd decreased as water stress increased,ranging from–0.96 to–1.50 MPa at sunrise and from–1.94 to–2.83 MPa at midday,respectively,under control and T3 treatments.C.siliqua accessions responded to drought through exhibiting significant changes in their physiological and morphological behavior.Both accessions A1 and A2 showed greater drought tolerance than accession A3.These seedlings exhibit different adaptive mechanisms such as stress avoidance,which are aimed at reducing transpiration,limiting leaf growth,and increasing root growth to exploit more soil water.Therefore,C.siliqua can be recommended for the ecological restoration in Mediterranean ecosystems.展开更多
The objective of this study was to quantify the effects of protection on herbaceous species composition, total plant cover, dry matter, plant density, floristic richness and diversity. Characteristics of vegetation un...The objective of this study was to quantify the effects of protection on herbaceous species composition, total plant cover, dry matter, plant density, floristic richness and diversity. Characteristics of vegetation under continued grazing and protected area for 10 and 65 years were examined in a degraded arid environment in South Tunisia. Our results show that protection enhances significantly (two times) different vegetation parameters. However, long-term protection was found to reduce biomass production, plant density and floristic diversity. Some palatable species such as Stipagrostis ciliata, Helianthemum sessiliflorum, Eragrostis papposa, Echiochilon fruticosum and Cenchrus ciliaris were frequently found in the protected sites. In the grazed site, these species were being replaced by less desirable species: Astragalus armarus, Peganum harmala and Artemisia compestris. This emphasized the importance of conservation stocking rates and proper pasture management.展开更多
Most ecological studies in North Africa reveal a process of continuous degradation of rangeland ecosystems as a result of overgrazing. This degradation appears across the decreasing of perennial grass diversity. Indee...Most ecological studies in North Africa reveal a process of continuous degradation of rangeland ecosystems as a result of overgrazing. This degradation appears across the decreasing of perennial grass diversity. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grass species at present. This study evaluated the effects of temperature and water limitation on the seed germination of Stipagrostis ciliata(Desf.) de Winter, a perennial grass species. The seeds were collected from the Bou Hedma Park, Sidi Bouzid Governorate, Central Tunisia. The thermal time and hydrothermal time models were used to describe the seed germination of S. ciliata under different water potentials and temperatures. The germination response of S. ciliata seeds in darkness was evaluated over a range of temperatures(15°C, 20°C, 25°C, 30°C and 35°C) and across a wide range of osmotic potentials(0.0, –0.2, –0.6, –1.2, –1.6 and –2.0 MPa) of the polyethylene glycol(PEG6000) solutions at each temperature level. Among the tested temperatures, 25°C was found to be the optimal temperature to the germination of S. ciliata seeds. The final germination percentage(75.2%) was obtained with distilled water. The progressive decrease of osmotic potential of the PEG6000 solutions inhibited the seed germination. However, the number of days to first germination was increased with a reduction of osmotic potential. A significant positive relationship was identified between final germination percentage of S. ciliata seeds and osmotic potential of the PEG6000 solutions, with R^2 ranging from 0.5678 to 0.8761. Furthermore, a high degree of congruency between predicted and observed germination time course curves was observed. In general, S. ciliata exhibits a significant adaptation capacity for water limitation and high temperature in arid ecosystems.展开更多
Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.S...Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.Since then,it has gained significant interest for its potential to colonize,proliferate,and become naturalized in Tunisia.Hence,understanding the seed germination response of H.persicum to abiotic conditions,including temperature,water stress,and salt stress,is crucial for predicting its future spread and adopting effective control strategies.Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0℃ to 35.0℃ and at various osmotic potentials(-2.00,-1.60,-1.00,-0.50,and 0.00 MPa)of polyethylene glycol-6000(PEG6000,indicating water stress)and sodium chloride(NaCl,indicating salt stress)solutions.Results showed remarkable correlations among the seed functional traits of H.persicum,indicating adaptive responses to local environmental constraints.The maximum germination rate was recorded at 25.0℃ with a rate of 0.39/d.Using the thermal time model,the base temperature was recorded at 8.4℃,the optimal temperature was 25.5℃,and the ceiling temperature was found at 58.3℃.Besides,based on the hydrotime model,the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0℃ and 30.0℃,respectively.Also,the species was found to have excellent tolerance to drought(water stress)compared to salt stress,which has implications for its potential growth into new habitats under climate change.Combining ecological and physiological approaches,this work elucidates the invasive potential of H.persicum and contributes to the protection of species distribution in Tunisian ecosystems.展开更多
基金This research was supported by Tunisian Minister of Research and High Education in particular Laboratory of Ecosystems and Biodiversity in Arid Land of Tunisia(LEBIOMAT),University of Sfax.
文摘Stipagrostis ciliata(Desf.)De Winter is a pastoral C4 grass grown in arid regions.This research work focused on assessing the growth of S.ciliata accessions derived from two different climate regions(a wet arid region in the Bou Hedma National Park in the central and southern part of Tunisia(coded as WA),and a dry arid region from the Matmata Mountain in the south of Tunisia(coded as DA))under water stress conditions.Specifically,the study aimed to investigate the phenological and physiological responses of potted S.ciliata seedlings under different water treatments:T_(1)(200 mm/a),T_(2)(150 mm/a),T_(3)(100 mm/a)and T_(4)(50 mm/a).Growth phenology,net photosynthesis(Pn),stomatal conductance(gs),midday leaf water potential(Ψmd),predawn leaf water potential(Ψpd),soil water content(SWC)and soil water potential(Ψs)were observed during the water stress cycle(from December 2016 to November 2017).The obtained results showed that the highest growth potential of the two accessions(WA and DA)was recorded under treatment T_(1).The two accessions responded differently and significantly to water stress.Photosynthetic parameters,such as Pn and gs,decreased sharply under treatments T_(2),T_(3)and T_(4)compared to treatment T_(1).The higher water stress increased the R/S ratio(the ratio of root dry biomass to shoot dry biomass),with values of 1.29 and 2.74 under treatment T_(4)for accessions WA and DA,respectively.Principal component analysis(PCA)was applied,and the separation of S.ciliata accessions on the first two axes of PCA(PC1 and PC2)suggested that accession DA was detected in the negative extremity of PC1 and PC2 under treatments T_(1)and T_(2).This accession was characterized by a high number of spikes.For treatments T_(3)and T_(4),both accessions were detected in the negative extremity of PC1 and PC2.They were characterized by a high root dry biomass.Therefore,S.ciliata accessions responded to water stress by displaying significant changes in their behaviours.Accession WA from the Bou Hedma National Park(wet arid region)showed higher drought tolerance than accession DA from the Matmata Mountain(dry arid region).S.ciliata exhibits a significant adaptation capacity for water limitation and may be an important species for ecosystem restoration.
文摘The greatest failure rate of reforestation programs is basically related to water deficit,especially at the seedling stage.Therefore,the main objective of this work is to investigate the responses of three accessions of carob trees(Ceratonia siliqua L.)with 2-year-old from different climate regions to drought generated by four water treatments:Tc(250 mm),T1(180 mm),T2(100 mm),and T3(50 mm).The first accession(A1)comes from the protected national park of Ichkeul in northern Tunisia.This zone belongs to the bioclimatic sub-humid stage.The second accession(A2)comes from Melloulech,located in the center-east of Tunisia,belonging to the bioclimatic semi-arid stage.The third accession(A3)comes from the mountain of Matmata,located in the south of Tunisia,belonging to the bioclimatic hyper-arid stage.The experiment was undertaken in a greenhouse.Gaz exchange indices(net photosynthesis(A),stomatal conductance(gs),transpiration rate(E),and internal CO_(2) concentration(Ci))were determined.Predawn(Ψpd)and midday(Ψmd)leaf water potentials,relative soil water content(SWC),and morphological parameters(plant height(H),number of leaves(NL),number of leaflets(Nl),and number of branches(NB))were estimated.The results showed that significant differences(P<0.001)were found between physiological and morphological parameters of each accession.The highest growth potential was recorded for Tc treatment in both accessions A1 and A2.Significant decreases in gs,E,Ci,and SWC were recorded with the increases in water stress applied from treatment T1 to T3.Positive and significant correlations were found between SWC andΨpd for all studied accessions.Ψpd andΨmd decreased as water stress increased,ranging from–0.96 to–1.50 MPa at sunrise and from–1.94 to–2.83 MPa at midday,respectively,under control and T3 treatments.C.siliqua accessions responded to drought through exhibiting significant changes in their physiological and morphological behavior.Both accessions A1 and A2 showed greater drought tolerance than accession A3.These seedlings exhibit different adaptive mechanisms such as stress avoidance,which are aimed at reducing transpiration,limiting leaf growth,and increasing root growth to exploit more soil water.Therefore,C.siliqua can be recommended for the ecological restoration in Mediterranean ecosystems.
文摘The objective of this study was to quantify the effects of protection on herbaceous species composition, total plant cover, dry matter, plant density, floristic richness and diversity. Characteristics of vegetation under continued grazing and protected area for 10 and 65 years were examined in a degraded arid environment in South Tunisia. Our results show that protection enhances significantly (two times) different vegetation parameters. However, long-term protection was found to reduce biomass production, plant density and floristic diversity. Some palatable species such as Stipagrostis ciliata, Helianthemum sessiliflorum, Eragrostis papposa, Echiochilon fruticosum and Cenchrus ciliaris were frequently found in the protected sites. In the grazed site, these species were being replaced by less desirable species: Astragalus armarus, Peganum harmala and Artemisia compestris. This emphasized the importance of conservation stocking rates and proper pasture management.
基金supported by the Tunisian Ministry of Scientific Research, especially the arid lands program
文摘Most ecological studies in North Africa reveal a process of continuous degradation of rangeland ecosystems as a result of overgrazing. This degradation appears across the decreasing of perennial grass diversity. Indeed, the majority of steppe ecosystems are characterized by a low density of perennial grass species at present. This study evaluated the effects of temperature and water limitation on the seed germination of Stipagrostis ciliata(Desf.) de Winter, a perennial grass species. The seeds were collected from the Bou Hedma Park, Sidi Bouzid Governorate, Central Tunisia. The thermal time and hydrothermal time models were used to describe the seed germination of S. ciliata under different water potentials and temperatures. The germination response of S. ciliata seeds in darkness was evaluated over a range of temperatures(15°C, 20°C, 25°C, 30°C and 35°C) and across a wide range of osmotic potentials(0.0, –0.2, –0.6, –1.2, –1.6 and –2.0 MPa) of the polyethylene glycol(PEG6000) solutions at each temperature level. Among the tested temperatures, 25°C was found to be the optimal temperature to the germination of S. ciliata seeds. The final germination percentage(75.2%) was obtained with distilled water. The progressive decrease of osmotic potential of the PEG6000 solutions inhibited the seed germination. However, the number of days to first germination was increased with a reduction of osmotic potential. A significant positive relationship was identified between final germination percentage of S. ciliata seeds and osmotic potential of the PEG6000 solutions, with R^2 ranging from 0.5678 to 0.8761. Furthermore, a high degree of congruency between predicted and observed germination time course curves was observed. In general, S. ciliata exhibits a significant adaptation capacity for water limitation and high temperature in arid ecosystems.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research,Research General Direction,Excellence Project(21P2ES-D1P3)the International Foundation for Science(IFS)(I1-D-6596-1).
文摘Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.Since then,it has gained significant interest for its potential to colonize,proliferate,and become naturalized in Tunisia.Hence,understanding the seed germination response of H.persicum to abiotic conditions,including temperature,water stress,and salt stress,is crucial for predicting its future spread and adopting effective control strategies.Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0℃ to 35.0℃ and at various osmotic potentials(-2.00,-1.60,-1.00,-0.50,and 0.00 MPa)of polyethylene glycol-6000(PEG6000,indicating water stress)and sodium chloride(NaCl,indicating salt stress)solutions.Results showed remarkable correlations among the seed functional traits of H.persicum,indicating adaptive responses to local environmental constraints.The maximum germination rate was recorded at 25.0℃ with a rate of 0.39/d.Using the thermal time model,the base temperature was recorded at 8.4℃,the optimal temperature was 25.5℃,and the ceiling temperature was found at 58.3℃.Besides,based on the hydrotime model,the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0℃ and 30.0℃,respectively.Also,the species was found to have excellent tolerance to drought(water stress)compared to salt stress,which has implications for its potential growth into new habitats under climate change.Combining ecological and physiological approaches,this work elucidates the invasive potential of H.persicum and contributes to the protection of species distribution in Tunisian ecosystems.