Powder compacts of the system Bi2–xPbxSr2Ca2Cu3Oy with 0 ≤ x ≤ 0.5 molar ratio using both techniques;isothermal hot pressing and the solid state reaction (sintering). The XRD of the hot pressed powder compacts of t...Powder compacts of the system Bi2–xPbxSr2Ca2Cu3Oy with 0 ≤ x ≤ 0.5 molar ratio using both techniques;isothermal hot pressing and the solid state reaction (sintering). The XRD of the hot pressed powder compacts of the nominal compositions Bi2–xPbxSr2Ca2Cu3Oy showed 2212 and 2223 phases. The resistivity temperature variations belonging to the composition Bi1.8Pb0.2Sr2Ca2Cu3Oy showed metal-superconducting transition at Tons = 143 K for the annealed sample for 24 h. The annealed nominal composition Bi1.5Pb0.5Sr2Ca2Cu3Oy for 18 h showed metal to superconducting transition at 80 K.展开更多
文摘Powder compacts of the system Bi2–xPbxSr2Ca2Cu3Oy with 0 ≤ x ≤ 0.5 molar ratio using both techniques;isothermal hot pressing and the solid state reaction (sintering). The XRD of the hot pressed powder compacts of the nominal compositions Bi2–xPbxSr2Ca2Cu3Oy showed 2212 and 2223 phases. The resistivity temperature variations belonging to the composition Bi1.8Pb0.2Sr2Ca2Cu3Oy showed metal-superconducting transition at Tons = 143 K for the annealed sample for 24 h. The annealed nominal composition Bi1.5Pb0.5Sr2Ca2Cu3Oy for 18 h showed metal to superconducting transition at 80 K.