期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Chronic neuroprotective effects of low concentration lithium on SH-SY5Y cells:possible involvement of stress proteins and gene expression 被引量:1
1
作者 Riadh Nciri Ezzeddine Bourogaa +4 位作者 Samira Jbahi mohamed salah allagui Abdelfattah Elfeki Christian Vincent Franoise Croute 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第7期735-740,共6页
To investigate the molecular mechanism underlying the neuroprotective effect of lithium on cells, in this study, we exposed SH-SY5Y cells to 0.5 mmol/L lithium carbonate (Li2CO2) for 25-50 weeks and then detected th... To investigate the molecular mechanism underlying the neuroprotective effect of lithium on cells, in this study, we exposed SH-SY5Y cells to 0.5 mmol/L lithium carbonate (Li2CO2) for 25-50 weeks and then detected the expression levels of some neurobiology related genes and post-translational modifications of stress proteins in SH-SYSY cells, cDNA arrays showed that pyruvate kinase 2 (PKM2) and calmodulin 3 (CaM 3) expression levels were significantly down-regulated, phosphatase protein PP2A expression was lightly down-regulated, and casein kinase II (CK2), threonine/tyrosine phosphatase 7 (PYST2), and dopamine beta-hydroxylase (DBH) expression levels were significantly up-regulated. Besides, western blot analysis of stress proteins (HSP27, HSP70, GRP78 and GRP94) showed an over-expression of two proteins: a 105 kDa protein which is a hyper-phosphorylated isoform of GRP94, and a 108 kDa protein which is a phosphorylated tetramer of HSP27. These results suggest that the neuroprotective effects of lithium are likely related to gene expressions and post-translational modifications of proteins cited above. 展开更多
关键词 LITHIUM NEUROPROTECTION KINASE PHOSPHATASE stress proteins SH-SY5Y cells GENEEXPRESSION mechanism of action
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部