Laboratory tests were conducted at the Irrigation Devices and Equipment’s Test Laboratory, Agricultural Engineering Research Institute, Agriculture Research Center, Giza, Egypt. The experimental design of laboratory ...Laboratory tests were conducted at the Irrigation Devices and Equipment’s Test Laboratory, Agricultural Engineering Research Institute, Agriculture Research Center, Giza, Egypt. The experimental design of laboratory experiments was split in randomized complete block design with three replicates. Laboratory tests carried out on three irrigation lateral lines of 40, 60, 80 m under the following three drip irrigation circuit (DIC) designs;1) one manifold for lateral lines or closed circuits with one manifold of drip irrigation system (CM1DIS);2) closed circuits with two manifolds for lateral lines (CM2DIS), and 3) traditional drip irrigation system (TDIS) as a control. The aims of the work were to study the effect of drip irrigation circuits (DIC) and lateral lines lengths (LLL;where): (LLL1 = 40 m, LLL2 = 60 m, and LLL3 = 80 m) on pressure head (PH) and friction loss (FL). Regarding to LLL and according to PH values, DIC designs could be ranked in the following ascending order: TDIS 1DIS 2DIS. The differences in PH among DIC designs were significant at the 1% level. The depressive effects of LLL on PH could be ranked in the following ascending order: LLL1 2 ≤ LLL3. Differences in PH among LLL treatments were significant at the 1% level except that between LLL2 and LLL3. The effects of interactions among: DIC × LLL on PH were significant at the 1% level with some exceptions. The highest value of PH (9.5 m) and the lowest one (6.05 m) were achieved in the interactions of CM2DIS × LLL1 and TDIS × LLL3, respectively. The shapes of the energy gradient lines were affected by DIC and LLL treatments used through their effect on ?H/H ratio. However, they followed similar trends. According to the FL values, DIC and LLL treatments could be ranked in the following descending orders TDIS > CM1DIS > CM2DIS and LLL1 > LLL2 > LLL3. The differences in FL among DIC and LLL were significant and the effects of interactions among DIC × LLL on FL were significant at the 1% level. The maximum and minimum values of FL were obtained in the interactions: TDIS × LLL3 and CM2DIS × LLL1, respectively. Therefore, the CM2DIS system is recommended for use where technically feasible.展开更多
The objectives of the work were to study the effect of drip irrigation circuits (DIC) and lateral lines lengths (LLL) on: Flow velocity (FV) and velocity head (VH). Laboratory tests were conducted at Irrigation Device...The objectives of the work were to study the effect of drip irrigation circuits (DIC) and lateral lines lengths (LLL) on: Flow velocity (FV) and velocity head (VH). Laboratory tests were conducted at Irrigation Devices and Equipments Tests Laboratory, Agricultural Engineering Research Institute, Agriculture Research Center, Giza, Egypt. The experimental design of laboratory experiments was split in randomized complete block design with three replicates. Laboratory tests carried out on three irrigation lateral lines 40, 60, 80 m (LLL1, LLL2;LLL3) under the following three drip irrigation circuits (DIC): a) one manifold for lateral lines or closed circuits with one manifold of drip irrigation system (CM1DIS);b) closed circuits with two manifolds for lateral lines (CM2DIS), and c) traditional drip irrigation system (TDIS) as a control. Concerning FV values, DIC and LLL treatments could state in the following ascending orders: TDIS 1DIS 2DIS and LLL1 2 3, respectively. FV varied from 0.593 m·sec–1 to 1.376 m?sec–1. i.e FV –1 and this is necessary to avoid the effect of water hammer in the main and sub-main lines, but in lateral line, it can cause silt and clay precipitation problems. The differences in FV among DIC and LLL were significant at the 1% level. The effect of interaction: DIC X LLL on FV values, were significant at the 1% level. The maximum and minimum values of FV were noticed in these interactions: CM2DIS X LLL3 and TDIS X LLL1, respectively. The following ascending orders TDIS 1DIS 2DIS and LLL1 2 3 expressed their effects on VH respectively. Differences in VH among DIC and/or LLL were significant at the 1% with few exceptions. The effects of interactions: DIC X LLL on VH were significant at the 1% level in some cases. The maximum and minimum values of VH were found in the interactions: CM2DIS X LLL3 and TDIS X LLL1, respectively.展开更多
文摘Laboratory tests were conducted at the Irrigation Devices and Equipment’s Test Laboratory, Agricultural Engineering Research Institute, Agriculture Research Center, Giza, Egypt. The experimental design of laboratory experiments was split in randomized complete block design with three replicates. Laboratory tests carried out on three irrigation lateral lines of 40, 60, 80 m under the following three drip irrigation circuit (DIC) designs;1) one manifold for lateral lines or closed circuits with one manifold of drip irrigation system (CM1DIS);2) closed circuits with two manifolds for lateral lines (CM2DIS), and 3) traditional drip irrigation system (TDIS) as a control. The aims of the work were to study the effect of drip irrigation circuits (DIC) and lateral lines lengths (LLL;where): (LLL1 = 40 m, LLL2 = 60 m, and LLL3 = 80 m) on pressure head (PH) and friction loss (FL). Regarding to LLL and according to PH values, DIC designs could be ranked in the following ascending order: TDIS 1DIS 2DIS. The differences in PH among DIC designs were significant at the 1% level. The depressive effects of LLL on PH could be ranked in the following ascending order: LLL1 2 ≤ LLL3. Differences in PH among LLL treatments were significant at the 1% level except that between LLL2 and LLL3. The effects of interactions among: DIC × LLL on PH were significant at the 1% level with some exceptions. The highest value of PH (9.5 m) and the lowest one (6.05 m) were achieved in the interactions of CM2DIS × LLL1 and TDIS × LLL3, respectively. The shapes of the energy gradient lines were affected by DIC and LLL treatments used through their effect on ?H/H ratio. However, they followed similar trends. According to the FL values, DIC and LLL treatments could be ranked in the following descending orders TDIS > CM1DIS > CM2DIS and LLL1 > LLL2 > LLL3. The differences in FL among DIC and LLL were significant and the effects of interactions among DIC × LLL on FL were significant at the 1% level. The maximum and minimum values of FL were obtained in the interactions: TDIS × LLL3 and CM2DIS × LLL1, respectively. Therefore, the CM2DIS system is recommended for use where technically feasible.
文摘The objectives of the work were to study the effect of drip irrigation circuits (DIC) and lateral lines lengths (LLL) on: Flow velocity (FV) and velocity head (VH). Laboratory tests were conducted at Irrigation Devices and Equipments Tests Laboratory, Agricultural Engineering Research Institute, Agriculture Research Center, Giza, Egypt. The experimental design of laboratory experiments was split in randomized complete block design with three replicates. Laboratory tests carried out on three irrigation lateral lines 40, 60, 80 m (LLL1, LLL2;LLL3) under the following three drip irrigation circuits (DIC): a) one manifold for lateral lines or closed circuits with one manifold of drip irrigation system (CM1DIS);b) closed circuits with two manifolds for lateral lines (CM2DIS), and c) traditional drip irrigation system (TDIS) as a control. Concerning FV values, DIC and LLL treatments could state in the following ascending orders: TDIS 1DIS 2DIS and LLL1 2 3, respectively. FV varied from 0.593 m·sec–1 to 1.376 m?sec–1. i.e FV –1 and this is necessary to avoid the effect of water hammer in the main and sub-main lines, but in lateral line, it can cause silt and clay precipitation problems. The differences in FV among DIC and LLL were significant at the 1% level. The effect of interaction: DIC X LLL on FV values, were significant at the 1% level. The maximum and minimum values of FV were noticed in these interactions: CM2DIS X LLL3 and TDIS X LLL1, respectively. The following ascending orders TDIS 1DIS 2DIS and LLL1 2 3 expressed their effects on VH respectively. Differences in VH among DIC and/or LLL were significant at the 1% with few exceptions. The effects of interactions: DIC X LLL on VH were significant at the 1% level in some cases. The maximum and minimum values of VH were found in the interactions: CM2DIS X LLL3 and TDIS X LLL1, respectively.