An experimental investigation of the shock-buffet phenomenon subject to unsteady pitching supercritical airfoil around its quarter chord has been conducted in a transonic wind tunnel.The model was equipped with pressu...An experimental investigation of the shock-buffet phenomenon subject to unsteady pitching supercritical airfoil around its quarter chord has been conducted in a transonic wind tunnel.The model was equipped with pressure taps connected to the fast response pressuretransducers.Measurements were conducted at different free-stream Mach number from 0.61 to0.76.The principle goal of this investigation was to experimentally discuss the shock-buffet criterion over a SC(2)-0410 supercritical pitching related to the hysteresis loops of total drag and trailing edge pressure,the behaviour of the shock wave foot location,the pressure distribution over the upper surface,and by implementing the wavelet analysis of the normal force.To ensure capturing the buffet phenomenon by utilizing these criteria,a pressure port has been drilled exactly at the trailing edge of the airfoil where its output was used to detect the buffet phenomenon for different conditions.Visual representation of the flow using the shadow graph flow visualization technique for different test cases is further used to illustrate the unsteady shock wave motion.A comparative analysis of experimental measurements shows that the conducted criteria confirm each other when the buffet phenomenon occurs at the position of the oscillating cycle.展开更多
文摘An experimental investigation of the shock-buffet phenomenon subject to unsteady pitching supercritical airfoil around its quarter chord has been conducted in a transonic wind tunnel.The model was equipped with pressure taps connected to the fast response pressuretransducers.Measurements were conducted at different free-stream Mach number from 0.61 to0.76.The principle goal of this investigation was to experimentally discuss the shock-buffet criterion over a SC(2)-0410 supercritical pitching related to the hysteresis loops of total drag and trailing edge pressure,the behaviour of the shock wave foot location,the pressure distribution over the upper surface,and by implementing the wavelet analysis of the normal force.To ensure capturing the buffet phenomenon by utilizing these criteria,a pressure port has been drilled exactly at the trailing edge of the airfoil where its output was used to detect the buffet phenomenon for different conditions.Visual representation of the flow using the shadow graph flow visualization technique for different test cases is further used to illustrate the unsteady shock wave motion.A comparative analysis of experimental measurements shows that the conducted criteria confirm each other when the buffet phenomenon occurs at the position of the oscillating cycle.