期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations
1
作者 mohammad asif arefin M.Ayesha Khatun +1 位作者 M.Hafiz Uddin Mustafa Inc 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期292-303,共12页
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m... This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering. 展开更多
关键词 Riemann-Liouville fractional derivative Space-time fractional(2+1)-dimensional dispersive long wave equation Approximate long water wave equation Wave transformation The two-variable(G′/G 1/G)-expansion method
原文传递
Analytical behavior of weakly dispersive surface and internal waves in the ocean
2
作者 mohammad asif arefin Md.Abu Saeed +1 位作者 M.Ali Akbar M.Hafiz Uddin 《Journal of Ocean Engineering and Science》 SCIE 2022年第4期305-312,共8页
The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Pe... The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Petviashvili(PKP)equation.It can be modeled according to the Hamiltonian structure,the lax pair with the non-isospectral problem,and the pain level property.The proposed equations are widely used in beachfront ocean and coastal engineering to describe the propagation of shallow-water waves,demonstrate the propagation of waves in dissipative and nonlinear media,and reveal the propagation of waves in dissipative and nonlinear media.In this paper,we have established further exact solutions to the nonlinear fractional partial differential equation(NLFPDEs),namely the space-time fractional CD and fractional PKP equations using the modified Rieman-Liouville fractional derivative of Jumarie through the two variable(G/G,1/G)-expansion method.As far as trigonometric,hyperbolic,and rational function so-lutions containing parameters are concerned,solutions are acquired when unique characteristics are as-signed to the parameters.Subsequently,the solitary wave solutions are generated from the solutions of the traveling wave.It is important to observe that this method is a realistic,convenient,well-organized,and ground-breaking strategy for solving various types of NLFPDEs. 展开更多
关键词 Two variable(G/G 1/G)-expansion method Exact solution Traveling wave solutions Solitary wave solutions The space-time fractional CD equation The space-time fractional PKP equation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部