In this article,we introduce and study the class of approximately Artinian(Noetherian)C^(*)-algebras,called AR-algebras(AN-algebras),which is a simultaneous generalization of Artinian(Noetherian)C*-algebras and AF-alg...In this article,we introduce and study the class of approximately Artinian(Noetherian)C^(*)-algebras,called AR-algebras(AN-algebras),which is a simultaneous generalization of Artinian(Noetherian)C*-algebras and AF-algebras.We study properties such as the ideal property and topological dimension zero for them.In particular,we show that a faithful AR or AN algebra is strongly purely infinite iff it is purely infinite iff it is weakly purely infinite.This extends the Kirchberg's O_(∞)-absorption theorem,and implies that a weakly purely infinite C^(*)-algebra is Noetherian iff every its ideal has a full projection.展开更多
基金supported by grants from INSF(98029498,99013953)partly supported by a grant from IPM(96430215)。
文摘In this article,we introduce and study the class of approximately Artinian(Noetherian)C^(*)-algebras,called AR-algebras(AN-algebras),which is a simultaneous generalization of Artinian(Noetherian)C*-algebras and AF-algebras.We study properties such as the ideal property and topological dimension zero for them.In particular,we show that a faithful AR or AN algebra is strongly purely infinite iff it is purely infinite iff it is weakly purely infinite.This extends the Kirchberg's O_(∞)-absorption theorem,and implies that a weakly purely infinite C^(*)-algebra is Noetherian iff every its ideal has a full projection.