In this paper, we generalize H(.,.) accretive operator introduced by Zou and Huang [1] and we call it H(.,.)- φ - η - accretive operator. We define the resolvent operator associated with H(.,.)- φ - η - accretive ...In this paper, we generalize H(.,.) accretive operator introduced by Zou and Huang [1] and we call it H(.,.)- φ - η - accretive operator. We define the resolvent operator associated with H(.,.)- φ - η - accretive operator and prove its Lipschitz continuity. By using these concepts an iterative algorithm is suggested to solve a generalized variational-like inclusion problem. Some examples are given to justify the definition of H(.,.)- φ - η - accretive operator.展开更多
文摘In this paper, we generalize H(.,.) accretive operator introduced by Zou and Huang [1] and we call it H(.,.)- φ - η - accretive operator. We define the resolvent operator associated with H(.,.)- φ - η - accretive operator and prove its Lipschitz continuity. By using these concepts an iterative algorithm is suggested to solve a generalized variational-like inclusion problem. Some examples are given to justify the definition of H(.,.)- φ - η - accretive operator.