Our aim was to study the selected cases of the patients with ischemic heart disease and to analyze the structure of blood serum of patients in comparison with control serum of healthy subjects by methods: synchronous ...Our aim was to study the selected cases of the patients with ischemic heart disease and to analyze the structure of blood serum of patients in comparison with control serum of healthy subjects by methods: synchronous fluorescence fingerprint and atomic force microscopy that are still not used in clinical practice. Our results of fluorescence analysis showed that blood serum of all patients with ischemic heart disease decreased intensity of fluorescence in comparison with control blood serum. Endogenous fluorescence of synchronous fluorescence fingerprint of blood serum of patients with unstable angina pectoris state after non ST elevation myocardial infarction;angina pectoris and arterial hypertension 3 was similar, but atomic force microscopy revealed differences in the structure of blood serum of patients with the angina pectoris. Blood serum of patients with angina pectoris exhibited disappearance of fluorescence peak with maximum fluorescence and showed lower fluorescence intensity than control blood serum and blood serum of patients with arterial hypertension 2. Profiles of synchronous fluorescence fingerprint of blood serum of patients with arterial hypertension stage 2 showed formation of the new fluorescent peak with maximum fluorescence, similar shape of synchronous fluorescence fingerprint and higher fluorescence intensity than blood serum of healthy subjects. Blood serum sensitively revealed changes in the body by using untraditional novel techniques which enable the analysis of the mixture of blood serum and might be a new possibility in study of heart ischemia diseases.展开更多
文摘Our aim was to study the selected cases of the patients with ischemic heart disease and to analyze the structure of blood serum of patients in comparison with control serum of healthy subjects by methods: synchronous fluorescence fingerprint and atomic force microscopy that are still not used in clinical practice. Our results of fluorescence analysis showed that blood serum of all patients with ischemic heart disease decreased intensity of fluorescence in comparison with control blood serum. Endogenous fluorescence of synchronous fluorescence fingerprint of blood serum of patients with unstable angina pectoris state after non ST elevation myocardial infarction;angina pectoris and arterial hypertension 3 was similar, but atomic force microscopy revealed differences in the structure of blood serum of patients with the angina pectoris. Blood serum of patients with angina pectoris exhibited disappearance of fluorescence peak with maximum fluorescence and showed lower fluorescence intensity than control blood serum and blood serum of patients with arterial hypertension 2. Profiles of synchronous fluorescence fingerprint of blood serum of patients with arterial hypertension stage 2 showed formation of the new fluorescent peak with maximum fluorescence, similar shape of synchronous fluorescence fingerprint and higher fluorescence intensity than blood serum of healthy subjects. Blood serum sensitively revealed changes in the body by using untraditional novel techniques which enable the analysis of the mixture of blood serum and might be a new possibility in study of heart ischemia diseases.