Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s li...Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s lives.Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques.This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography(CBIS-DDSM)data set.The novelty of the proposed framework lies in the integration of various techniques,where the fusion of deep learning(DL),traditional machine learning(ML)techniques,and enhanced classification models have been deployed using the curated dataset.The analysis outcome proves that the proposed enhanced RF(ERF),enhanced DT(EDT)and enhanced LR(ELR)models for BC detection outperformed most of the existing models with impressive results.展开更多
Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives.Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay ...Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives.Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay its onset.In this study,we proposed a Deep Dense Layer Neural Network(DDLNN)for diabetes prediction using a dataset with 768 instances and nine variables.We also applied a combination of classical machine learning(ML)algorithms and ensemble learning algorithms for the effective prediction of the disease.The classical ML algorithms used were Support Vector Machine(SVM),Logistic Regression(LR),Decision Tree(DT),K-Nearest Neighbor(KNN),and Naïve Bayes(NB).We also constructed ensemble models such as bagging(Random Forest)and boosting like AdaBoost and Extreme Gradient Boosting(XGBoost)to evaluate the performance of prediction models.The proposed DDLNN model and ensemble learning models were trained and tested using hyperparameter tuning and K-Fold cross-validation to determine the best parameters for predicting the disease.The combined ML models used majority voting to select the best outcomes among the models.The efficacy of the proposed and other models was evaluated for effective diabetes prediction.The investigation concluded that the proposed model,after hyperparameter tuning,outperformed other learning models with an accuracy of 84.42%,a precision of 85.12%,a recall rate of 65.40%,and a specificity of 94.11%.展开更多
To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Susta...To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture.展开更多
Multi-criteria decision making(MCDM)is a technique used to achieve better outcomes for some complex business-related problems,whereby the selection of the best alternative can be made in as many cases as possible.This...Multi-criteria decision making(MCDM)is a technique used to achieve better outcomes for some complex business-related problems,whereby the selection of the best alternative can be made in as many cases as possible.This paper proposes a model,the multi-criteria decision support method,that allows both service providers and consumers to maximize their profits while preserving the best matching process for resource allocation and task scheduling.The increasing number of service providers with different service provision capabilities creates an issue for consumers seeking to select the best service provider.Each consumer seeks a service provider based on various preferences,such as price,service quality,and time to complete the tasks.In the literature,the problem is viewed from different perspectives,such as investigating how to enhance task scheduling and the resource allocation process,improve consumers’trust,and deal with network problems.This paper offers a novel model that considers the preferences of both service providers and consumers to find the best available service provider for each consumer.First,the model adopts the best-worst method(BWM)to gather and prioritize tasks based on consumers’and service providers’preferences.Then,the model calculates and matches similarities between the sets of tasks from the consumer’s side with the sets of tasks from the provider’s side to select the best service provider for each consumer using the two proposed algorithms.The complexity of the two algorithms is found to be O(n3).展开更多
Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve i...Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.展开更多
Recent advancements in hardware and communication technologies have enabled worldwide interconnection using the internet of things(IoT).The IoT is the backbone of smart city applications such as smart grids and green ...Recent advancements in hardware and communication technologies have enabled worldwide interconnection using the internet of things(IoT).The IoT is the backbone of smart city applications such as smart grids and green energy management.In smart cities,the IoT devices are used for linking power,price,energy,and demand information for smart homes and home energy management(HEM)in the smart grids.In complex smart gridconnected systems,power scheduling and secure dispatch of information are the main research challenge.These challenges can be resolved through various machine learning techniques and data analytics.In this paper,we have proposed a particle swarm optimization based machine learning algorithm known as a collaborative execute-before-after dependency-based requirement,for the smart grid.The proposed collaborative execute-before-after dependencybased requirement algorithm works in two phases,analysis and assessment of the requirements of end-users and power distribution companies.In the rst phases,a xed load is adjusted over a period of 24 h,and in the second phase,a randomly produced population load for 90 days is evaluated using particle swarm optimization.The simulation results demonstrate that the proposed algorithm performed better in terms of percentage cost reduction,peak to average ratio,and power variance mean ratio than particle swarm optimization and inclined block rate.展开更多
Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse ap...Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse application potentials.Nowadays,different methods are available for automatic script recognition.Among most of the reported script recognition techniques,deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms.However,the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error,which renders them unfeasible.This approach often requires manual intervention with domain expertise which consumes substantial time and computational resources.To alleviate this shortcoming,this paper proposes a new neural architecture search approach based on meta-heuristic quantum particle swarm optimization(QPSO),which is capable of automatically evolving the meaningful convolutional neural network(CNN)topologies.The computational experiments have been conducted on eight different datasets belonging to three popular Indic scripts,namely Bangla,Devanagari,and Dogri,consisting of handwritten characters and digits.Empirically,the results imply that the proposed QPSO-CNN algorithm outperforms the classical and state-of-the-art methods with faster prediction and higher accuracy.展开更多
In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases an...In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.展开更多
Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reserv...Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reservoir pressure,increase hydrocarbon output,and reduce the environmental effect.The goal of this project is to create a water injection model utilizing Eclipse reservoir simulation software to better understand water injection methods for reservoir pressure maintenance.A basic reservoir model is utilized in this investigation.For simulation designs,the reservoir length,breadth,and thickness may be changed to different levels.The water-oil contact was discovered at 7000 feet,and the reservoir pressure was recorded at 3000 pounds per square inch at a depth of 6900 feet.The aquifer chosen was of the Fetkovich type and was linked to the reservoir in the j+direction.The porosity was estimated to be varied,ranging from 9%to 16%.The residual oil saturation was set to 25%and the irreducible water saturation was set at 20%.The vertical permeability was set at 50 md as a constant.Pressure Volume Temperature(PVT)data was used to estimate the gas and water characteristics.展开更多
The COVID-19 pandemic is a virus that has disastrous effects onhuman lives globally;still spreading like wildfire causing huge losses to humanityand economies. There is a need to follow few constraints like social dis...The COVID-19 pandemic is a virus that has disastrous effects onhuman lives globally;still spreading like wildfire causing huge losses to humanityand economies. There is a need to follow few constraints like social distancingnorms, personal hygiene, and masking up to effectively control the virus spread.The proposal is to detect the face frame and confirm the faces are properly covered with masks. By applying the concepts of Deep learning, the results obtainedfor mask detection are found to be effective. The system is trained using4500 images to accurately judge and justify its accuracy. The aim is to developan algorithm to automatically detect a mask, but the approach does not facilitatethe percentage of improper usage. Accuracy levels are as low as 50% if the maskis improperly covered and an alert is raised for improper placement. It can be usedat traffic places and social gatherings for the prevention of virus transmission. Itworks by first locating the region of interest by creating a frame boundary, thenfacial points are picked up to detect and concentrate on specific features. Thetraining on the input images is performed using different epochs until the artificialface mask detection dataset is created. The system is implemented using TensorFlow with OpenCV and Python using a Jupyter Notebook simulation environment. The training dataset used is collected from a set of diverse open-sourcedatasets with filtered images available at Kaggle Medical Mask Dataset by Mikolaj Witkowski, Kera, and Prajna Bhandary. To simulate MobilNetV2 classifier isused to load and pre-process the image dataset for building a fully connectedhead. The objective is to assess the accuracy of the identification, measuringthe efficiency and effectiveness of algorithms for precision, recall, and F1 score.展开更多
文摘Breast cancer(BC)is one of the leading causes of death among women worldwide,as it has emerged as the most commonly diagnosed malignancy in women.Early detection and effective treatment of BC can help save women’s lives.Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques.This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography(CBIS-DDSM)data set.The novelty of the proposed framework lies in the integration of various techniques,where the fusion of deep learning(DL),traditional machine learning(ML)techniques,and enhanced classification models have been deployed using the curated dataset.The analysis outcome proves that the proposed enhanced RF(ERF),enhanced DT(EDT)and enhanced LR(ELR)models for BC detection outperformed most of the existing models with impressive results.
文摘Diabetes is one of the fastest-growing human diseases worldwide and poses a significant threat to the population’s longer lives.Early prediction of diabetes is crucial to taking precautionary steps to avoid or delay its onset.In this study,we proposed a Deep Dense Layer Neural Network(DDLNN)for diabetes prediction using a dataset with 768 instances and nine variables.We also applied a combination of classical machine learning(ML)algorithms and ensemble learning algorithms for the effective prediction of the disease.The classical ML algorithms used were Support Vector Machine(SVM),Logistic Regression(LR),Decision Tree(DT),K-Nearest Neighbor(KNN),and Naïve Bayes(NB).We also constructed ensemble models such as bagging(Random Forest)and boosting like AdaBoost and Extreme Gradient Boosting(XGBoost)to evaluate the performance of prediction models.The proposed DDLNN model and ensemble learning models were trained and tested using hyperparameter tuning and K-Fold cross-validation to determine the best parameters for predicting the disease.The combined ML models used majority voting to select the best outcomes among the models.The efficacy of the proposed and other models was evaluated for effective diabetes prediction.The investigation concluded that the proposed model,after hyperparameter tuning,outperformed other learning models with an accuracy of 84.42%,a precision of 85.12%,a recall rate of 65.40%,and a specificity of 94.11%.
文摘To detect the improper sitting posture of a person sitting on a chair,a posture detection system using machine learning classification has been proposed in this work.The addressed problem correlates to the third Sustainable Development Goal(SDG),ensuring healthy lives and promoting well-being for all ages,as specified by the World Health Organization(WHO).An improper sitting position can be fatal if one sits for a long time in the wrong position,and it can be dangerous for ulcers and lower spine discomfort.This novel study includes a practical implementation of a cushion consisting of a grid of 3×3 force-sensitive resistors(FSR)embedded to read the pressure of the person sitting on it.Additionally,the Body Mass Index(BMI)has been included to increase the resilience of the system across individual physical variances and to identify the incorrect postures(backward,front,left,and right-leaning)based on the five machine learning algorithms:ensemble boosted trees,ensemble bagged trees,ensemble subspace K-Nearest Neighbors(KNN),ensemble subspace discriminant,and ensemble RUSBoosted trees.The proposed arrangement is novel as existing works have only provided simulations without practical implementation,whereas we have implemented the proposed design in Simulink.The results validate the proposed sensor placements,and the machine learning(ML)model reaches a maximum accuracy of 99.99%,which considerably outperforms the existing works.The proposed concept is valuable as it makes it easier for people in workplaces or even at individual household levels to work for long periods without suffering from severe harmful effects from poor posture.
文摘Multi-criteria decision making(MCDM)is a technique used to achieve better outcomes for some complex business-related problems,whereby the selection of the best alternative can be made in as many cases as possible.This paper proposes a model,the multi-criteria decision support method,that allows both service providers and consumers to maximize their profits while preserving the best matching process for resource allocation and task scheduling.The increasing number of service providers with different service provision capabilities creates an issue for consumers seeking to select the best service provider.Each consumer seeks a service provider based on various preferences,such as price,service quality,and time to complete the tasks.In the literature,the problem is viewed from different perspectives,such as investigating how to enhance task scheduling and the resource allocation process,improve consumers’trust,and deal with network problems.This paper offers a novel model that considers the preferences of both service providers and consumers to find the best available service provider for each consumer.First,the model adopts the best-worst method(BWM)to gather and prioritize tasks based on consumers’and service providers’preferences.Then,the model calculates and matches similarities between the sets of tasks from the consumer’s side with the sets of tasks from the provider’s side to select the best service provider for each consumer using the two proposed algorithms.The complexity of the two algorithms is found to be O(n3).
文摘Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.
文摘Recent advancements in hardware and communication technologies have enabled worldwide interconnection using the internet of things(IoT).The IoT is the backbone of smart city applications such as smart grids and green energy management.In smart cities,the IoT devices are used for linking power,price,energy,and demand information for smart homes and home energy management(HEM)in the smart grids.In complex smart gridconnected systems,power scheduling and secure dispatch of information are the main research challenge.These challenges can be resolved through various machine learning techniques and data analytics.In this paper,we have proposed a particle swarm optimization based machine learning algorithm known as a collaborative execute-before-after dependency-based requirement,for the smart grid.The proposed collaborative execute-before-after dependencybased requirement algorithm works in two phases,analysis and assessment of the requirements of end-users and power distribution companies.In the rst phases,a xed load is adjusted over a period of 24 h,and in the second phase,a randomly produced population load for 90 days is evaluated using particle swarm optimization.The simulation results demonstrate that the proposed algorithm performed better in terms of percentage cost reduction,peak to average ratio,and power variance mean ratio than particle swarm optimization and inclined block rate.
文摘Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse application potentials.Nowadays,different methods are available for automatic script recognition.Among most of the reported script recognition techniques,deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms.However,the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error,which renders them unfeasible.This approach often requires manual intervention with domain expertise which consumes substantial time and computational resources.To alleviate this shortcoming,this paper proposes a new neural architecture search approach based on meta-heuristic quantum particle swarm optimization(QPSO),which is capable of automatically evolving the meaningful convolutional neural network(CNN)topologies.The computational experiments have been conducted on eight different datasets belonging to three popular Indic scripts,namely Bangla,Devanagari,and Dogri,consisting of handwritten characters and digits.Empirically,the results imply that the proposed QPSO-CNN algorithm outperforms the classical and state-of-the-art methods with faster prediction and higher accuracy.
文摘In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.
文摘Water injection has shown to be one of the most successful,efficient,and cost-effective reservoir management strategies.By re-injecting treated and filtered water into reservoirs,this approach can help maintain reservoir pressure,increase hydrocarbon output,and reduce the environmental effect.The goal of this project is to create a water injection model utilizing Eclipse reservoir simulation software to better understand water injection methods for reservoir pressure maintenance.A basic reservoir model is utilized in this investigation.For simulation designs,the reservoir length,breadth,and thickness may be changed to different levels.The water-oil contact was discovered at 7000 feet,and the reservoir pressure was recorded at 3000 pounds per square inch at a depth of 6900 feet.The aquifer chosen was of the Fetkovich type and was linked to the reservoir in the j+direction.The porosity was estimated to be varied,ranging from 9%to 16%.The residual oil saturation was set to 25%and the irreducible water saturation was set at 20%.The vertical permeability was set at 50 md as a constant.Pressure Volume Temperature(PVT)data was used to estimate the gas and water characteristics.
文摘The COVID-19 pandemic is a virus that has disastrous effects onhuman lives globally;still spreading like wildfire causing huge losses to humanityand economies. There is a need to follow few constraints like social distancingnorms, personal hygiene, and masking up to effectively control the virus spread.The proposal is to detect the face frame and confirm the faces are properly covered with masks. By applying the concepts of Deep learning, the results obtainedfor mask detection are found to be effective. The system is trained using4500 images to accurately judge and justify its accuracy. The aim is to developan algorithm to automatically detect a mask, but the approach does not facilitatethe percentage of improper usage. Accuracy levels are as low as 50% if the maskis improperly covered and an alert is raised for improper placement. It can be usedat traffic places and social gatherings for the prevention of virus transmission. Itworks by first locating the region of interest by creating a frame boundary, thenfacial points are picked up to detect and concentrate on specific features. Thetraining on the input images is performed using different epochs until the artificialface mask detection dataset is created. The system is implemented using TensorFlow with OpenCV and Python using a Jupyter Notebook simulation environment. The training dataset used is collected from a set of diverse open-sourcedatasets with filtered images available at Kaggle Medical Mask Dataset by Mikolaj Witkowski, Kera, and Prajna Bhandary. To simulate MobilNetV2 classifier isused to load and pre-process the image dataset for building a fully connectedhead. The objective is to assess the accuracy of the identification, measuringthe efficiency and effectiveness of algorithms for precision, recall, and F1 score.