Capacity of components subjected to earthquake actions is still a widely interesting research topic. Hence, developing precise tools for predicting drift capacities of reinforced concrete (RC) columns is of great inte...Capacity of components subjected to earthquake actions is still a widely interesting research topic. Hence, developing precise tools for predicting drift capacities of reinforced concrete (RC) columns is of great interest. RC columns are not only frequently constructed, but also their composite behavior makes the capacity prediction a task faced with many uncertainties. In the current article, novel empirical approaches are presented for predicting flexural, shear and axial failure modes in RC columns. To this aim, an extensive experimental database was created by collecting outcomes of previously conducted experimental tests since 1964, which are available in the literature. It serves as the basis for deriving the equations for predicting the drift capacity of RC columns by different regression analyses (both linear with different orders and nonlinear). Furthermore, fragility curves are determined for comparing the obtained results with the experimental results and with previously proposed models, like the ones of ASCE/SEI41-13. It is demonstrated that the proposed equations predict drift capacities, which are in better agreement with experimental results than those computed by previously published models. In addition, the reliability of the proposed equations is higher from a probabilistic point of view.展开更多
Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models ...Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models with a single variable have an inherent dificulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners,and their mutual dependencies.In the current models that adopt two damage variables,the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa.This study presents a cyclic model established by extending an existing monotonic constitutive model.The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response.The proposed model,dubbed the enhanced concrete damage plasticity model(ECDPM),is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics.Unlike most prior studies on models in the same category,the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression.The performance of the model is observed to be satisfactory.Furthermore,the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.展开更多
文摘Capacity of components subjected to earthquake actions is still a widely interesting research topic. Hence, developing precise tools for predicting drift capacities of reinforced concrete (RC) columns is of great interest. RC columns are not only frequently constructed, but also their composite behavior makes the capacity prediction a task faced with many uncertainties. In the current article, novel empirical approaches are presented for predicting flexural, shear and axial failure modes in RC columns. To this aim, an extensive experimental database was created by collecting outcomes of previously conducted experimental tests since 1964, which are available in the literature. It serves as the basis for deriving the equations for predicting the drift capacity of RC columns by different regression analyses (both linear with different orders and nonlinear). Furthermore, fragility curves are determined for comparing the obtained results with the experimental results and with previously proposed models, like the ones of ASCE/SEI41-13. It is demonstrated that the proposed equations predict drift capacities, which are in better agreement with experimental results than those computed by previously published models. In addition, the reliability of the proposed equations is higher from a probabilistic point of view.
基金The authors acknowledge the financial support of this study by the Austrian Marshall Plan Foundation,which funded the first author's short-term visit to UCLA during the course of this study.
文摘Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes,while a few more advanced models employ two damage variables.Models with a single variable have an inherent dificulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners,and their mutual dependencies.In the current models that adopt two damage variables,the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa.This study presents a cyclic model established by extending an existing monotonic constitutive model.The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response.The proposed model,dubbed the enhanced concrete damage plasticity model(ECDPM),is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics.Unlike most prior studies on models in the same category,the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression.The performance of the model is observed to be satisfactory.Furthermore,the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.