There has been a noticeable increase in use of Solar PV based systems for power generation, given its renewable nature. A solar PV based grid tie inverters are used for dc-ac conversion. The conventional line commutat...There has been a noticeable increase in use of Solar PV based systems for power generation, given its renewable nature. A solar PV based grid tie inverters are used for dc-ac conversion. The conventional line commutated ac-to-dc inverters have square-shaped line current which contains higher-order harmonics. The line current with the high harmonic contents generates EMI and moreover it causes more heating of the core of distribution/power transformers. Alternatively, PWM based inverters using MOSFET/IGBT switches are also used for the same purpose. However, apart from higher switching losses, the power handling capability and reliability of these devices are quite low in comparison to thyristors/SCR. Nevertheless, the conventional thyristor based forced commutated inverters are not suitable for PWM applications due to the problems of commutation circuits. A pure sinusoidal line current or waveform with low har- monic contents is the most desirable. In the present work, a multilevel line commutated inverter topology has been proposed and analyzed which improves the wave shape and hence reduces the total harmonic distortion (THD) of the line current in a grid tie line commutated inverter. The scheme has successfully been implemented and tested. Moreover, the performance of the proposed topology is far better than the conventional line-commutated inverter. It reduces THD, losses, switching stress and EMI.展开更多
文摘There has been a noticeable increase in use of Solar PV based systems for power generation, given its renewable nature. A solar PV based grid tie inverters are used for dc-ac conversion. The conventional line commutated ac-to-dc inverters have square-shaped line current which contains higher-order harmonics. The line current with the high harmonic contents generates EMI and moreover it causes more heating of the core of distribution/power transformers. Alternatively, PWM based inverters using MOSFET/IGBT switches are also used for the same purpose. However, apart from higher switching losses, the power handling capability and reliability of these devices are quite low in comparison to thyristors/SCR. Nevertheless, the conventional thyristor based forced commutated inverters are not suitable for PWM applications due to the problems of commutation circuits. A pure sinusoidal line current or waveform with low har- monic contents is the most desirable. In the present work, a multilevel line commutated inverter topology has been proposed and analyzed which improves the wave shape and hence reduces the total harmonic distortion (THD) of the line current in a grid tie line commutated inverter. The scheme has successfully been implemented and tested. Moreover, the performance of the proposed topology is far better than the conventional line-commutated inverter. It reduces THD, losses, switching stress and EMI.