Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ...Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.展开更多
The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further stu...The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further studied.On the pre-weld heat-treated samples,upon solving the secondaryγ′particles in the matrix,primaryγ′particles in the base metal grew to"ogdoadically diced cubes"of about 2μm in side lengths.The pre-weld heat treatment reduced the hardness of the base metal to about HV 310.Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ.The constitutional melting of the secondary,eutectic,and Zr-rich phases promoted the liquation cracking in the HAZ.The microstructure of the weld fusion zones showed the presence of fine spheroidalγ′particles with sizes of about 0.2μm after the post-weld heat treatment,which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals,respectively.Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.展开更多
In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative...In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.展开更多
The effect of temperatures and time of post-process aging on the microstructure,mechanical properties and wear behavior of friction stir processed 7075 Al alloy was investigated,using optical microscopy(OM),scanning...The effect of temperatures and time of post-process aging on the microstructure,mechanical properties and wear behavior of friction stir processed 7075 Al alloy was investigated,using optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and Vickers microhardness tester.The results indicate that homogeneous,equiaxed and fine recrystallized microstructure is obtained with the grain size of 4-5 μm.The hardness value increases up to 30% and 80% in the stir zone and the base material,respectively.Based on the TEM observations,it is concluded that the improved properties following the duplex friction stir-aging process can be attributed to the very fine precipitates.Comparing the single and double aging conditions,the hardness of single aging sample is higher than that of double aging one which can be attributed to the high fraction of very fine spheroidal precipitate in single aging sample.The wear rate is reduced by the aging of Al alloy and a more decrease is achieved after the aging of FSPed sample.展开更多
文摘Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.
文摘The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further studied.On the pre-weld heat-treated samples,upon solving the secondaryγ′particles in the matrix,primaryγ′particles in the base metal grew to"ogdoadically diced cubes"of about 2μm in side lengths.The pre-weld heat treatment reduced the hardness of the base metal to about HV 310.Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ.The constitutional melting of the secondary,eutectic,and Zr-rich phases promoted the liquation cracking in the HAZ.The microstructure of the weld fusion zones showed the presence of fine spheroidalγ′particles with sizes of about 0.2μm after the post-weld heat treatment,which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals,respectively.Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.
文摘In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.
文摘The effect of temperatures and time of post-process aging on the microstructure,mechanical properties and wear behavior of friction stir processed 7075 Al alloy was investigated,using optical microscopy(OM),scanning electron microscopy(SEM),transmission electron microscopy(TEM) and Vickers microhardness tester.The results indicate that homogeneous,equiaxed and fine recrystallized microstructure is obtained with the grain size of 4-5 μm.The hardness value increases up to 30% and 80% in the stir zone and the base material,respectively.Based on the TEM observations,it is concluded that the improved properties following the duplex friction stir-aging process can be attributed to the very fine precipitates.Comparing the single and double aging conditions,the hardness of single aging sample is higher than that of double aging one which can be attributed to the high fraction of very fine spheroidal precipitate in single aging sample.The wear rate is reduced by the aging of Al alloy and a more decrease is achieved after the aging of FSPed sample.