Energy storage (ES) is a form of media that store one form of energy to be utilized at another time. Importance of ES is comprehended while intermittent nature of renewable energy (RE) generation increases and integra...Energy storage (ES) is a form of media that store one form of energy to be utilized at another time. Importance of ES is comprehended while intermittent nature of renewable energy (RE) generation increases and integration into the grid becomes viable in terms of economics and environment. However, technical analysis should be carried out before large scale integration into the grid. Some utilities experienced in Europe and expressed concern about issues in integrating large scale renewable energy in the areas of harmonics, voltage regulation, network protection and islanding. In Australia, distribution network (DN) is not robust compared to the European grid;moreover loads are largely distributed over large geographical areas. Installation of RE such as roof top solar photovoltaic (PV) is increasing in Australia which also boosted by the governments incentives to the individual owners. It is therefore obvious that large scale PV integration into the Australian grid is imminent. The intermittent characteristic of solar PV is expected to have greater impacts on DN in Australia compared to the DN in Europe. Therefore this paper investigated the impacts of solar PV on low voltage (LV) DN where loads connected through distribution transformer (DT) and finally further investigation was conducted with the deployment of ES into the respective load centers. It was found that storage reduced the overall peak load condition on the DT, and also reduced the energy fluctuation in the DN. It was also found that storage improved the voltage regulation on the LV side of DT and stabilized node voltage.展开更多
文摘Energy storage (ES) is a form of media that store one form of energy to be utilized at another time. Importance of ES is comprehended while intermittent nature of renewable energy (RE) generation increases and integration into the grid becomes viable in terms of economics and environment. However, technical analysis should be carried out before large scale integration into the grid. Some utilities experienced in Europe and expressed concern about issues in integrating large scale renewable energy in the areas of harmonics, voltage regulation, network protection and islanding. In Australia, distribution network (DN) is not robust compared to the European grid;moreover loads are largely distributed over large geographical areas. Installation of RE such as roof top solar photovoltaic (PV) is increasing in Australia which also boosted by the governments incentives to the individual owners. It is therefore obvious that large scale PV integration into the Australian grid is imminent. The intermittent characteristic of solar PV is expected to have greater impacts on DN in Australia compared to the DN in Europe. Therefore this paper investigated the impacts of solar PV on low voltage (LV) DN where loads connected through distribution transformer (DT) and finally further investigation was conducted with the deployment of ES into the respective load centers. It was found that storage reduced the overall peak load condition on the DT, and also reduced the energy fluctuation in the DN. It was also found that storage improved the voltage regulation on the LV side of DT and stabilized node voltage.